
A fully reproducible Quarto
book template

Powered by Github Actions and Nix

Bruno Rodrigues

19/10/2023

Table of contents

Welcome! 1
This book template gets built on Github Actions at

each push . 1

1 Nix 3
1.1 The Nix package manager 3
1.2 Ensuring reproducibility with Nix 4
1.3 The R {rix} package 5

2 Building on Github Actions with Nix 9
2.1 Setup . 9
2.2 The Github Actions workflow file 9

3 Conclusion 13

iii

Welcome!

This book template gets built on Github
Actions at each push

This Quarto book template gets automatically built on Github
Actions each time you push changes. To ensure reproducibility,
the Nix package manager gets used to install all the dependen-
cies you need:

• An R version;
• A library of R packages;
• Quarto;
• TeXLive packages;
• any other system-level dependency that is required.

Because a specific nixpkgs revision gets used, exactly the same
pieces of software get always installed. So you don’t need to pin
a specific version of R, nor use {renv}, nor make sure to use
a fixed version of a runner (typically ubuntu-22.04) to ensure
reproducibility of your book. The next chapter explain how Nix
works in more detail and why it’s enough to use it to ensure
reproducibility.

Each time a commit gets pushed, a website gets built, an Epub
for E-ink readers (such as the Kindle or the Kobo) and a PDF

1

Welcome!

get built. The PDF is also in the right format and ready for
self-publishing on Amazon Kindle Direct Publishing.

2

1 Nix

This book template uses the Nix packager manager to handle the
book’s dependencies. This chapter introduces the Nix packager
manager and nixpkgs quickly.

1.1 The Nix package manager

Nix is a package manager available for Linux, Windows (on
WSL2) and macOS. Its mono-repository, nixpkgs, contains
more than 80’000 packages, among them the entirety of the
R packages released on CRAN and Bioconductor, as well as
R itself (and RStudio, but only for Linux and Windows, as of
writing). This means that it is possible to use the Nix package
manager to install R, the R packages you require for your
day-to-day work, and any other packages that you might need
(for example, if you need Python and Python packages, you can
install these as well).

The question that remains unanswered though, is why use
the Nix package manager to install all this software instead
of using the usual ways of first installing R, and then using
install.packages() to install any required packages?

There are at least three reasons. The first is that it is possible
to define so-called default.nix files that define an environ-
ment. This environment will contain all the packages that

3

1 Nix

you require, and will not interfere with any other packages
installed on your system. This essentially means that you can
have project-specific default.nix files, each specifying the
requirements for specific projects. The second reason is that
when installing a package that requires system-level dependen-
cies, {rJava} for example, all the lower-level dependencies get
automatically installed. Forget about reading error messages of
install.packages() to find which system development library
you need to install first. The third reason, is that you can pin
a specific revision of nixpkgs to ensure reproducibility.

1.2 Ensuring reproducibility with Nix

The nixpkgs mono-repository is “just” a Github repsitory which
you can find here: https://github.com/NixOS/nixpkgs. This
repository contains Nix expressions to build and install more
than 80’000 packages and you can search for installable Nix
packages here.

Because nixpkgs is a Github repository, it is possible to use
a specific commit hash to install the packages as they were at
a specific point in time. For example, if you use this commit,
7c9cc5a6e, you’ll get the very latest packages as of the 19th of
October 2023, but if you used this one instead: 976fa3369, you’ll
get packages from the 19th of August 2023.

You can declare which revision of nixpkgs to use at the top of
a default.nix file. Here is what such a file looks like:

let
pkgs = import (fetchTarball
"https://github.com/NixOS/nixpkgs/archive/976fa3369d722e76f37c77493d99829540d43845.tar.gz")
{};

4

https://github.com/NixOS/nixpkgs
https://search.nixos.org/packages

1.3 The R {rix} package

rpkgs = builtins.attrValues {
inherit (pkgs.rPackages) tidymodels vetiver
targets xgboost;

};
system_packages = builtins.attrValues {
inherit (pkgs) R;

};
in
pkgs.mkShell {
buildInputs = [rpkgs system_packages];

}

As you can see, we import a specific revision of the nixpkgs
Github repository to ensure that we always get the same pack-
ages in our environment.

If you’re unfamiliar with Nix, this file can be quite scary. But
don’t worry, with my co-author Philipp Baumann we developed
an R package called {rix} which generate this default.nix
files for you.

1.3 The R {rix} package

{rix} is an R package that makes it very easy to generate
very complex default.nix files. These files can in turn be
used by the Nix package manager to build project-specific en-
vironments. The book’s Github repository contains a file called
define_env.R with the following content:

library(rix)

rix(r_ver = "4.3.1",

5

https://github.com/philipp-baumann

1 Nix

r_pkgs = c("quarto"),
system_pkgs = "quarto",
tex_pkgs = c(

"amsmath",
"framed",
"fvextra",
"environ",
"fontawesome5",
"orcidlink",
"pdfcol",
"tcolorbox",
"tikzfill"

),
ide = "other",
shell_hook = "",
project_path = ".",
overwrite = TRUE,
print = TRUE)

{rix} ships the rix() function which takes several arguments.
These arguments allow you to specify an R version, a list of R
packages, a list of system packages, TeXLive packages and other
options that allow you to specify your requirements. Running
this code generates this default.nix file:

This file was generated by the {rix} R package
v0.4.1 on 2023-10-19
with following call:
>rix(r_ver =
"976fa3369d722e76f37c77493d99829540d43845",
> r_pkgs = c("quarto"),
> system_pkgs = "quarto",
> tex_pkgs = c("amsmath",

6

1.3 The R {rix} package

> "framed",
> "fvextra",
> "environ",
> "fontawesome5",
> "orcidlink",
> "pdfcol",
> "tcolorbox",
> "tikzfill"),
> ide = "other",
> project_path = ".",
> overwrite = TRUE,
> print = TRUE,
> shell_hook = "")
It uses nixpkgs' revision
976fa3369d722e76f37c77493d99829540d43845 for
reproducibility purposes
which will install R version 4.3.1
Report any issues to
https://github.com/b-rodrigues/rix
let
pkgs = import (fetchTarball
"https://github.com/NixOS/nixpkgs/archive/976fa3369d722e76f37c77493d99829540d43845.tar.gz")
{};
rpkgs = builtins.attrValues {
inherit (pkgs.rPackages) quarto;

};
tex = (pkgs.texlive.combine {
inherit (pkgs.texlive) scheme-small amsmath framed
fvextra environ fontawesome5 orcidlink pdfcol
tcolorbox tikzfill;

});
system_packages = builtins.attrValues {
inherit (pkgs) R glibcLocalesUtf8 quarto;

7

1 Nix

};
in
pkgs.mkShell {

LOCALE_ARCHIVE = if pkgs.system ==
"x86_64-linux" then
"${pkgs.glibcLocalesUtf8}/lib/locale/locale-archive"
else "";
LANG = "en_US.UTF-8";
LC_ALL = "en_US.UTF-8";
LC_TIME = "en_US.UTF-8";
LC_MONETARY = "en_US.UTF-8";
LC_PAPER = "en_US.UTF-8";
LC_MEASUREMENT = "en_US.UTF-8";

buildInputs = [rpkgs tex system_packages];
}

You can now use this file to work on your book locally by first
building the environment and then use it. To know more about
using default.nix files on a day-to-day basis, read this vi-
gnette.

In the next chapter, I’m going to explain how this book gets
built on Github Actions.

8

https://b-rodrigues.github.io/rix/articles/building-reproducible-development-environments-with-rix.html
https://b-rodrigues.github.io/rix/articles/building-reproducible-development-environments-with-rix.html

2 Building on Github
Actions with Nix

2.1 Setup

Just like when building using the usual approches, you first need
to build the book locally, on your computer, once. For this,
after having generated the default.nix file, you can build the
environment using nix-build, and then drop in a shell with
nix-shell (if this previous sentence is confusing, make sure you
read the vignette linked at the end of the previous chapter).

Once in that shell, run quarto publish gh-pages. This will
render the book, and make sure that everything gets setup prop-
erly. If the book does not render, this could mean that you’re
missing some dependency. Make sure to specify all the require-
ments in the define_env.R script and that you re-generated the
default.nix file. If the quarto publish gh-pages command
succeeds, you’re all set. Editing the book and pushing will build
the book on Github Actions.

2.2 The Github Actions workflow file

Here is what the workflow file looks like:

9

2 Building on Github Actions with Nix

name: Build book using Nix

on:
push:

branches:
- main
- master

jobs:
build:

runs-on: ubuntu-latest

steps:
- name: Checkout Code

uses: actions/checkout@v3

- name: Install Nix
uses:
DeterminateSystems/nix-installer-action@main
with:

logger: pretty
log-directives: nix_installer=trace
backtrace: full

- name: Nix cache
uses:
DeterminateSystems/magic-nix-cache-action@main

- name: Build development environment
run: |

nix-build

- name: Publish to GitHub Pages (and render)

10

2.2 The Github Actions workflow file

uses:
b-rodrigues/quarto-nix-actions/publish@main
env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

The first step Checkout code makes the code available to the rest
of the steps. I then install Nix on this runner using the Determi-
nate Systems nix-installer-action and then I use another ac-
tion from Determinate Systems, the magic-nix-cache-action.
This action caches all the packages so that they don’t need to
get re-built each time a change gets pushed, speeding up the
process by a lot. The development environment gets then built
using nix-build.

Finally, an action I defined runs, quarto-nix-actions/publish.
This is a fork of the quarto-actions/publish action which
you can find here. My fork simply makes sure that the
quarto render and quarto publish commands run in the
Nix environment defined for the project.

11

https://github.com/quarto-dev/quarto-actions/blob/main/publish/action.yml
https://github.com/b-rodrigues/quarto-nix-actions/blob/f48f5a7813eb4978a2f557ff45bcc854526fb80b/publish/action.yml#L58

3 Conclusion

So in conclusion, should you use this template? I think you
should, even if you’re not that familiar with Nix. If you need to
add packages, simply rerun define_env.R after having added
the packages you need. This will generate a new default.nix
file that will generate the right environment once you push this
change. The advantage of using Nix is that it will always work:
the workflow file uses ubuntu-latest, so the underlying operat-
ing system changes with time, but because you’re using a fixed
revision of Nix, the same versions of R and packages will get
used, forever.

If you need more recent packages or a more recent version of
R, simply use a more recent nixpkgs revision. If, despite all
these advantages, you prefer using {renv}, you could check out
my other Github template. This template does exactly the
same thing: it builds a website for your book, an Epub for
E-ink readers and a PDF, ready for Amazon’s self-publishing
service. The difference is that the right version of R, TeXLive
and Quarto get installed using dedicated actions, and the R
packages get installed using {renv}. The underlying operating
system is ubuntu-22.04 instead of ubuntu-latest. This is to
ensure that the underlying system dependencies stay stable, but
it also means that you will need to update this operating sys-
tem once version 22.04 of Ubuntu is deprecated (in 2027) which
could cause the R version and packages that you need not to
be installable anymore. This is a lot of moving pieces, and if

13

https://github.com/b-rodrigues/kdp_quarto

3 Conclusion

one of them fails, nothing will work anymore. You also notice
this if you pay attention at the number of lines of code of the
workflow files of both repositories: if you compare the Github
workflow file from the template that uses actions to install the
right software and {renv} to the one from this template you’ll
notice that the one from this template is much shorter as well.

The only dependency is Nix itself, and Nix is not going any-
where, as it’s been around for 20 years. The Determinate Sys-
tem actions are optional; so even if for some reason those fail in
the future, they’re not needed. It’s just that using them makes
things easier.

If you use this template, or have any questions, please let me
know by opening an issue.

14

https://github.com/b-rodrigues/kdp_quarto/blob/main/.github/workflows/build_book.yml
https://github.com/b-rodrigues/kdp_quarto/blob/main/.github/workflows/build_book.yml
https://github.com/b-rodrigues/kdp_quarto/blob/main/.github/workflows/build_book.yml
https://github.com/b-rodrigues/quarto_book_nix/blob/master/.github/workflows/build_book.yml
https://github.com/b-rodrigues/quarto_book_nix/issues

	Welcome!
	This book template gets built on Github Actions at each push

	Nix
	The Nix package manager
	Ensuring reproducibility with Nix
	The R {rix} package

	Building on Github Actions with Nix
	Setup
	The Github Actions workflow file

	Conclusion

