
Building Reproducible
Analytical Pipelines

Master of Data Science, University of
Luxembourg - 2025

Bruno Rodrigues

2025-09-15

Table of contents

Introduction 1
Schedule . 1
Reproducible analytical pipelines? 2
Data products? . 2
Machine learning? . 3
What actually is reproducibility? 4

The requirements of a RAP 4
Large Language Models 5
Why R? Why not [insert your favourite programming

language] . 6
Nix . 8
Pre-requisites . 9
Grading . 10
Jargon . 10
Further reading . 11
License . 12

1 Reproducibility with Nix 13
1.1 Learning Outcomes 14
1.2 Why Reproducibility? Why Nix? (2h) 14

1.2.1 Motivation: Reproducibility in Scientific
and Data Workflows 14

1.2.2 Problems with Ad-Hoc Tools 15
1.2.3 Nix, a declarative package manager 15
1.2.4 The rix package 17
1.2.5 Installing Nix 18

iii

Table of contents

1.2.6 Temporary shells 20
1.3 Session 1.2 – Dev Environments with Nix (2h) . . 21

1.3.1 Some Nix concepts 21
1.3.2 Derivations 22
1.3.3 Using {rix} to generate development en-

vironments 24
1.3.4 Using nix-shell to Launch Environments 25
1.3.5 Pinning with nixpkgs 26

1.4 Configuring your IDE 26
1.4.1 Recommended setup on macOS 27
1.4.2 Recommended setup on Windows 28
1.4.3 Recommended setup on Linux 29
1.4.4 RStudio 29
1.4.5 VS Code or Positron 32

1.5 Hands-On Exercises 35

2 Git 37
2.1 Introduction . 38
2.2 Installing Git . 39
2.3 Setting up a repo 40
2.4 Cloning the repository onto your computer 44
2.5 Setting up SSH authentication 45
2.6 Your first commit 47
2.7 Understanding Git workflow commands 49
2.8 Working with commit history 50
2.9 Collaborating and handling conflicts 51

2.9.1 Strategy 1: Merging (The Default) 52
2.9.2 Strategy 2: Rebasing (The Cleaner Way) . 53

2.10 Working with branches 56
2.11 Advanced workflow with branches 57
2.12 Essential daily workflow 58
2.13 A Better Way to Collaborate: Trunk-Based De-

velopment . 59
2.13.1 How to Work with Short-Lived Branches . 60

iv

Table of contents

2.14 Contributing to someone else’s repository 62
2.15 Working with LLMs and Git: Managing

AI-Generated Changes 63
2.15.1 The LLM workflow with Git 64
2.15.2 Examining LLM changes 64
2.15.3 Interactive staging: Accepting changes

chunk by chunk 65
2.15.4 Example: Reviewing LLM changes to an

R script 66
2.15.5 Advanced chunk management 67
2.15.6 Creating meaningful commits after LLM

review . 68
2.15.7 Working with multiple files modified by

LLM . 69
2.15.8 Handling LLM-generated new files 69
2.15.9 Using Git to compare LLM suggestions . . 70
2.15.10 Best practices for LLM + Git workflow . . 71
2.15.11 Example complete workflow 71

3 Functional Programming: The Cornerstone of Re-
producible Analysis 73
3.1 Introduction: From Scripts to Functions 74

3.1.1 Why Does This Matter for Data Science? 76
3.2 Purity and Side Effects 77

3.2.1 Handling “Impure” Operations like Ran-
domness 78

3.2.2 Can We Make This Truly Pure? 80
3.3 Writing Your Own Functions 84
3.4 The Functional Toolkit: Map, Filter, and Reduce 86

3.4.1 1. Mapping: Applying a Function to
Each Element 87

3.4.2 2. Filtering: Keeping Elements That
Match a Condition 89

v

Table of contents

3.4.3 3. Reducing: Combining All Elements
into a Single Value 90

3.5 The Power of Composition 92

4 Unit Testing: The Safety Net for Your Code 95
4.1 Introduction: Proving Your Code Works 96
4.2 The Philosophy of a Good Unit Test 97
4.3 Unit Testing in Practice 97

4.3.1 Testing in R with {testthat} 98
4.3.2 Testing in Python with pytest 100

4.4 Testing as a Design Tool 101
4.5 The Modern Data Scientist’s Role: Reviewer and

AI Collaborator 102
4.5.1 Using LLMs to Write Tests 103
4.5.2 Testing and Code Review 104
4.5.3 A Note on Packaging and Project Structure104
4.5.4 Hands-On Exercises 105

5 Building Reproducible Pipelines with Nix and
{rixpress} 113
5.1 Introduction: From Scripts and Notebooks to

Pipelines . 114
5.2 Our First Polyglot Pipeline 117

5.2.1 Step 0: Use Git 118
5.2.2 Step 1: Defining the Environment 118
5.2.3 Step 2: Defining the Pipeline 119
5.2.4 Step 3: Building and Inspecting the

Pipeline 124
5.3 Caching . 125
5.4 Debugging and Working with Build Logs 126
5.5 Running Someone Else’s Pipeline: The Ultimate

Test of Reproducibility 128

vi

Introduction

This is the 2025 edition of the course. If you’re looking for the
2024 edition, you can click here

What’s new:

• Focus on Nix as the canonical tool for reproducibility and
build automation

• Integration of LLMs as an additional tool in the reproduc-
ers toolbox.

This course is based on my book titled Building Reproducible
Analytical Pipelines with R. This course focuses only on certain
aspects that are discussed in greater detail in the book.

Schedule

• 2025/09/04 - 4 hours,
• 2025/09/11 - 4 hours,
• 2025/09/14 - 4 hours,
• 2025/09/02 - 4 hours,
• 2025/09/05 - 2 hours,
• 2025/09/09 - 5 hours,
• 2025/09/16 - 4 hours,
• 2025/09/19 - 3 hours,

1

https://b-rodrigues.github.io/rap4mads_2024/
https://raps-with-r.dev/
https://raps-with-r.dev/

Introduction

Reproducible analytical pipelines?

This course is my take on setting up code that results in some
data product. This code has to be reproducible, documented and
production ready. Not my original idea, but introduced by the
UK’s Analysis Function.

The basic idea of a reproducible analytical pipeline (RAP) is to
have code that always produces the same result when run, what-
ever this result might be. This is obviously crucial in research
and science, but this is also the case in businesses that deal with
data science/data-driven decision making etc.

A well documented RAP avoids a lot of headache and is usually
re-usable for other projects as well.

Data products?

In this course each of you will develop a data product. A data
product is anything that requires data as an input. This can
be a very simple report in PDF or Word format or a complex
web app. This website is actually also a data product, which I
made using the R programming language. In this course we will
not focus too much on how to create automated reports or web
apps (but I’ll give an introduction to these, don’t worry) but our
focus will be on how to set up a pipeline that results in these
data products in a reproducible way.

2

https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/

Machine learning?

Machine learning?

No, being a master in machine learning is not enough to become
a data scientist. Actually, the older I get, the more I think that
machine learning is almost optional. What is not optional is
knowing how:

• to write, test, and properly document code;
• to acquire (reading in data can be tricky!) and clean data;
• to work inside the Linux terminal/command line interface;
• to use Git, Docker for Dev(Git)Ops;
• the Internet works (what’s a firewall? what’s a reverse

proxy? what’s a domain name? etc, etc…);

But what about machine learning? Well, depending what you’ll
end up doing, you might indeed focus a lot on machine learn-
ing and/or statistical modeling. That being said, in practice, it
is very often much more efficient to let some automl algorithm
figure out the best hyperparameters of a XGBoost model and
simply use that, at least as a starting point (but good luck im-
proving upon automl…). What matters, is that the data you’re
feeding to your model is clean, that your analysis is sensible,
and most importantly, that it could be understood by someone
taking over (imagine you get sick) and rerun with minimal ef-
fort in the future. The model here should simply be a piece that
could be replaced by another model without much impact. The
model is rarely central… but of course there are exceptions to
this, especially in research, but every other point I’ve made still
stands. It’s just that not only do you have to care about your
model a lot, you also have to care about everything else.

So in this course we’re going to learn a bit of all of this. We’re
going to learn how to write reusable code, learn some basics of
the Linux command line, Git and Docker.

3

Introduction

What actually is reproducibility?

A reproducible project means that this project can be rerun
by anyone at 0 (or very minimal) cost. But there are different
levels of reproducibility, and I will discuss this in the next section.
Let’s first discuss some requirements that a project must have
to be considered a RAP.

The requirements of a RAP

For something to be truly reproducible, it has to respect the
following bullet points:

• Source code must obviously be available and thoroughly
tested and documented (which is why we will be using Git
and Github);

• All the dependencies must be easy to find and install (we
are going to deal with this using dependency management
tools);

• To be written with an open source programming language
(nocode tools like Excel are by default non-reproducible
because they can’t be used non-interactively, and which is
why we are going to use the R programming language);

• The project needs to be run on an open source operating
system (thankfully, we can deal with this without having
to install and learn to use a new operating system, thanks
to Docker);

• Data and the paper/report need obviously to be accessible
as well, if not publicly as is the case for research, then
within your company.

Also, reproducibility is on a continuum, and depending on the
constraints you face your project can be “not very reproducible”

4

Large Language Models

to “totally reproducible”. Let’s consider the following list of
anything that can influence how reproducible your project truly
is:

• Version of the programming language used;
• Versions of the packages/libraries of said programming lan-

guage used;
• Operating System, and its version;
• Versions of the underlying system libraries (which often go

hand in hand with OS version, but not necessarily).
• And even the hardware architecture that you run all that

software stack on.

So by “reproducibility is on a continuum”, what I mean is that
you could set up your project in a way that none, one, two, three,
four or all of the preceding items are taken into consideration
when making your project reproducible.

This is not a novel, or new idea. Peng (2011) already discussed
this concept but named it the reproducibility spectrum.

Large Language Models

LLMs have rapidly become an essential powertool in the data
scientist’s toolbox. But as with any powertool, beginners risk
cutting their fingers if they’re not careful. So it is important to
learn how to use them. This course will give you some pointers
on how to integrate LLMs into your workflow.

5

Introduction

Why R? Why not [insert your favourite
programming language]

R is a domain-specific language whose domain is statistics, data
analysis/science and machine learning, and as such has many
built-in facilities to make handling data very efficient.

If you learn R you have access to almost 25’000 packages (as of
June 2025, including both CRAN and Bioconductor packages)
to:

• clean data (see: {dplyr}, {tidyr}, {data.table}…);
• work with medium and big data (see: {arrow},

{sparklyr}…);
• visualize data (see: {ggplot2}, {plotly}, {echarts4r}…);
• do literate programming (using Rmarkdown or Quarto,

you can write books, documents even create a website);
• do functional programming (see: {purrr}…);
• call other languages from R (see: {reticulate} to call

Python from R);
• do machine learning and AI (see: {tidymodels},

{tensorflow}, {keras}…)
• create webapps (see: {shiny}…)
• domain specific statistics/machine learning (see CRAN

Task Views for an exhaustive list);
• and more

It’s not just about what the packages provide: installing R and
its packages and dependencies is rarely frustrating, which is not
the case with Python (Python 2 vs Python 3, pip vs conda,
pyenv vs venv vs uv, …, dependency hell is a real place full of
snakes)

6

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/

Why R? Why not [insert your favourite programming language]

That doesn’t mean that R does not have any issues. Quite
the contrary, R sometimes behaves in seemingly truly bizarre
ways (as an example, try running nchar("1000000000") and
then nchar(1000000000) and try to make sense of it). To know
more about such bizarre behaviour, I recommend you read The
R Inferno (linked at the end of this chapter). So, yes, R is far
from perfect, but it sucks less than the alternatives (again, in
my absolutely objective opinion).

nchar("1000000000")

That being said, the reality of data science is that the future is
becoming more and more polyglot. Data products are evermore
complex, and necessity are built using many languages; so ideally
we would like to find a way to use whatever tool is best fit for

7

Introduction

the job at hand. Sometimes it can be R, sometimes Python,
sometimes shell scripts, or any other language. This is where
Nix will help us.

Nix

Nix is a package manager for Linux distributions, macOS and it
even works on Windows if you enable WSL2. What’s a package
manager? If you’re not a Linux user, you may not be aware.
Let me explain it this way: in R, if you want to install a pack-
age to provide some functionality not included with a vanilla
installation of R, you’d run this:

install.packages("dplyr")

It turns out that Linux distributions, like Ubuntu for example,
work in a similar way, but for software that you’d usually install
using an installer (at least on Windows). For example you could
install Firefox on Ubuntu using:

sudo apt-get install firefox

(there’s also graphical interfaces that make this process “more
user-friendly”). In Linux jargon, packages are simply what we
call software (or I guess it’s all “apps” these days). These pack-
ages get downloaded from so-called repositories (think of CRAN,
the repository of R packages, or Pypi, in the case of Python) but
for any type of software that you might need to make your com-
puter work: web browsers, office suites, multimedia software and
so on.

So Nix is just another package manager that you can use to
install software.

8

Pre-requisites

But what interests us is not using Nix to install Firefox, but
instead to install R, Python and the R and Python packages
that we require for our analysis. But why use Nix instead of the
usual ways to install software on our operating systems?

The first thing that you should know is that Nix’s repository,
nixpkgs, is huge. Humongously huge. As I’m writing these
lines, there’s more than 120’000 pieces of software available, and
the entirety of CRAN and Bioconductor is also available through
nixpkgs. So instead of installing R as you usually do and then
use install.packages() to install packages, you could use Nix
to handle everything. But still, why use Nix at all?

Nix has an interesting feature: using Nix, it is possible to install
software in (relatively) isolated environments. So using Nix, you
can install as many versions of R and R packages that you need.
Suppose that you start working on a new project. As you start
the project, with Nix, you would install a project-specific version
of R and R packages that you would only use for that particular
project. If you switch projects, you’d switch versions of R and
R packages.

Pre-requisites

I will assume basic programming knowledge, and not much more.
Ideally you’ll be following this course from a Linux machine, but
if you’re macOS, that’s fine as well. On Windows, you will have
to set up WSL2 to follow along.

9

https://search.nixos.org/packages
https://learn.microsoft.com/en-us/windows/wsl/install

Introduction

Grading

The way grading works in this course is as follows: during lecture
hours you will follow along. At home, you’ll be working on
setting up your own pipeline. For this, choose a dataset that
ideally would need some cleaning and/or tweaking to be usable.
We are going first to learn how to package this dataset alongside
some functions to make it clean. If time allows, I’ll leave some
time during lecture hours for you to work on it and ask me
and your colleagues for help. At the end of the semester, I
will need to download your code and get it running. The less
effort this takes me, the better your score. Here is a tentative
breakdown:

• Code is on github.com and the repository is documented
with a Readme.md file: 5 points;

• Data and functions to run pipeline are documented and
tested: 5 points;

• Every software dependency is easily installed: 5 points;
• Pipeline can be executed in one command: 5 points;
• Bonus points: pipeline is dockerized, or uses Nix, and/or

uses Github Actions to run? 5 points

The way to fail this class is to write an undocumented script
that only runs on your machine and expect me to debug it to
get it to run.

Jargon

There’s some jargon that is helpful to know when working with
R. Here’s a non-exhaustive list to get you started:

10

Further reading

• CRAN: the Comprehensive R Archive Network. This is
a curated online repository of packages and R installers.
When you type install.packages("package_name") in
an R console, the package gets downloaded from there;

• Library: the collection of R packages installed on your
machine;

• R console: the program where the R interpreter runs;
• Posit/RStudio: Posit (named RStudio in the past) are the

makers of the RStudio IDE and of the tidyverse collection
of packages;

• tidyverse: a collection of packages created by Posit that
offer a common language and syntax to perform any task
required for data science — from reading in data, to clean-
ing data, up to machine learning and visualisation;

• base R: refers to a vanilla installation (and vanilla capabil-
ities) of R. Often used to contrast a tidyverse specific ap-
proach to a problem (for example, using base R’s lapply()
in constrast to the tidyverse purrr::map()).

• package::function(): Functions can be accessed in sev-
eral ways in R, either by loading an entire package at
the start of a script with library(dplyr) or by using
dplyr::select().

• Function factory (sometimes adverb): a function that re-
turns a function.

• Variable: the variable of a function (as in x in f(x)) or the
variable from statistical modeling (synonym of feature)

• <- vs =: in practice, you can use <- and = interchangeably.
I prefer <-, but feel free to use = if you wish.

Further reading

• An Introduction to R (from the R team themselves)

11

https://cran.r-project.org/doc/manuals/r-release/R-intro.html

Introduction

• What is CRAN?
• The R Inferno
• Building Reproducible Analytical Pipelines with R
• Reproducible Analytical Pipelines (RAP)

License

This course is licensed under the WTFPL.

12

https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-CRAN_003f
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://raps-with-r.dev/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
http://www.wtfpl.net/txt/copying/

1 Reproducibility with Nix

13

1 Reproducibility with Nix

1.1 Learning Outcomes

By the end of this chapter, you will:

• Understand the need for environment reproducibility in
modern workflows

• Install Nix
• Use {rix} to generate default.nix files
• Build cross-language environments for data work or soft-

ware development

1.2 Why Reproducibility? Why Nix?
(2h)

1.2.1 Motivation: Reproducibility in Scientific
and Data Workflows

To ensure that a project is reproducible you need to deal with
at least four things:

• Make sure that the required/correct version of R (or any
other language) is installed;

• Make sure that the required versions of packages are in-
stalled;

• Make sure that system dependencies are installed (for ex-
ample, you’d need a working Java installation to install
the rJava R package on Linux);

• Make sure that you can install all of this for the hardware
you have on hand.

14

1.2 Why Reproducibility? Why Nix? (2h)

But in practice, one or most of these bullet points are missing
from projects. The goal of this course is to learn how to fullfill
all the requirements to build reproducible projects.

1.2.2 Problems with Ad-Hoc Tools

Tools like Python’s venv or R’s renv only deal with some pieces
of the reproducibility puzzle. Often, they assume an underlying
OS, do not capture native system dependencies (like libxml2,
pandoc, or curl), and require users to “rebuild” their environ-
ments from partial metadata. Docker helps but introduces over-
head, security challenges, and complexity.

Traditional approaches fail to capture the entire dependency
graph of a project in a deterministic way. This leads to “it
works on my machine” syndromes, onboarding delays, and sub-
tle bugs.

1.2.3 Nix, a declarative package manager

Nix is a tool for reproducible builds and development environ-
ments, often introduced as a package manager. It captures
complete dependency trees, from your programming language
interpreter to every system-level library you rely on. With Nix,
environments are not recreated from documentation, but rebuilt
precisely from code.

Nix can be installed on Linux distributions, macOS and it even
works on Windows if you enable WSL2. In this course, we will
use Nix mostly as a package manager (but towards the end also
as a build automation tool).

15

1 Reproducibility with Nix

What’s a package manager? If you’re not a Linux user, you
may not know. Let me explain it this way: in R, if you want
to install a package to provide some functionality not included
with a vanilla installation of R, you’d run this:

install.packages("dplyr")

It turns out that Linux distributions, like Ubuntu for example,
work in a similar way, but for software that you’d usually install
using an installer (at least on Windows). For example you could
install Firefox on Ubuntu using:

sudo apt-get install firefox

(there’s also graphical interfaces that make this process “more
user-friendly”). In Linux jargon, packages are simply what we
call software (or I guess it’s all “apps” these days). These pack-
ages get downloaded from so-called repositories (think of CRAN,
the repository of R packages) but for any type of software that
you might need to make your computer work: web browsers,
office suites, multimedia software and so on.

So Nix is just another package manager that you can use to
install software.

But what interests us is not using Nix to install Firefox, but
instead to install R and the R packages that we require for our
analysis (or any other programming language that we need). But
why use Nix instead of the usual ways to install software on our
operating systems?

The first thing that you should know is that Nix’s repository,
nixpkgs, is huge. Humongously huge. As I’m writing these
lines, there’s more than 120’000 pieces of software available, and
the entirety of CRAN and Bioconductor is also available through
nixpkgs. So instead of installing R as you usually do and then

16

https://search.nixos.org/packages

1.2 Why Reproducibility? Why Nix? (2h)

use install.packages() to install packages, you could use Nix
to handle everything. But still, why use Nix at all?

Nix has an interesting feature: using Nix, it is possible to install
software in (relatively) isolated environments. So using Nix, you
can install as many versions of R and R packages that you need.
Suppose that you start working on a new project. As you start
the project, with Nix, you would install a project-specific version
of R and R packages that you would only use for that particular
project. If you switch projects, you’d switch versions of R and
R packages.

However Nix has quite a steep learning curve, so this is why for
the purposes of this course we are going to use an R package
called {rix} to set up reproducible environments.

1.2.4 The rix package

The idea of {rix} is for you to declare the environment you need
using the provided rix() function. rix() is the package’s main
function and generates a file called default.nix which is then
used by the Nix package manager to build that environment.
Ideally, you would set up such an environment for each of your
projects. You can then use this environment to either work
interactively, or run R or Python scripts. It is possible to have
as many environments as projects, and software that is common
to environments will simply be re-used and not get re-installed
to save space. Environments are isolated for each other, but can
still interact with your system’s files, unlike with Docker where
a volume must be mounted. Environments can also interact
with the software installed on your computer through the usual
means, which can sometimes lead to issues. For example, if you
already have R installed, and a user library of R packages, more

17

1 Reproducibility with Nix

caution is required to properly use environments managed by
Nix.

You don’t need to have R installed or be an R user to use {rix}.
If you have Nix installed on your system, it is possible to “drop”
into a temporary environment with R and {rix} available and
generate the required Nix expression from there.

But first, let’s install Nix and try to use temporary shells.

1.2.5 Installing Nix

If you are on Windows, you need the Windows Subsystem for
Linux 2 (WSL2) to run Nix. If you are on a recent version of
Windows 10 or 11, you can simply run this as an administrator
in PowerShell:

wsl --install

You can find further installation notes at this official MS docu-
mentation.

I recommend to activate systemd in Ubuntu WSL2, mainly be-
cause this supports other users than root running Nix. To set
this up, please do as outlined this official Ubuntu blog entry:

in WSL2 Ubuntu shell

sudo -i
nano /etc/wsl.conf

This will open the /etc/wsl.conf in a nano, a command line
text editor. Add the following line:

18

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://ubuntu.com/blog/ubuntu-wsl-enable-systemd

1.2 Why Reproducibility? Why Nix? (2h)

[boot]
systemd=true

Save the file with CTRL-O and then quit nano with CTRL-X.
Then, type the following line in powershell:

wsl --shutdown

and then relaunch WSL (Ubuntu) from the start menu. For
those of you running Windows, we will be working exclusively
from WSL2 now. If that is not an option, then I highly recom-
mend you set up a virtual machine with Ubuntu using Virtual-
Box for example, or dual-boot Ubuntu.

Installing (and uninstalling) Nix is quite simple, thanks to the
installer from Determinate Systems, a company that provides
services and tools built on Nix, and works the same way on
Linux (native or WSL2) and macOS.

Do not use your operating system’s package manager to install
Nix. Instead, simply open a terminal and run the following line
(on Windows, if you cannot or have decided not to activate sys-
temd, then you have to append --init none to the command.
You can find more details about this on The Determinate Nix
Installer page):

curl --proto '=https' --tlsv1.2 -sSf \
-L https://install.determinate.systems/nix | \
sh -s -- install

Then, install the cachix client and configure the rstats-on-nix
cache: this will install binary versions of many R packages
which will speed up the building process of environments:

19

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://determinate.systems/posts/determinate-nix-installer
https://github.com/DeterminateSystems/nix-installer
https://github.com/DeterminateSystems/nix-installer

1 Reproducibility with Nix

nix-env -iA cachix -f
https://cachix.org/api/v1/install↪

then use the cache:

cachix use rstats-on-nix

You only need to do this once per machine you want to use {rix}
on. Many thanks to Cachix for sponsoring the rstats-on-nix
cache!

1.2.6 Temporary shells

You now have Nix installed; before continuing, it let’s see if
everything works (close all your terminals and reopen them) by
droping into a temporary shell with a tool you likely have not
installed on your machine.

Open a terminal and run:

which sl

you will likely see something like this:

which: no sl in

now run this:

20

https://www.cachix.org/

1.3 Session 1.2 – Dev Environments with Nix (2h)

nix-shell -p sl

and then again:

which sl

this time you should see something like:

/nix/store/cndqpx74312xkrrgp842ifinkd4cg89g-sl-5.05/bin/sl

This is the path to the sl binary installed through Nix. The
path starts with /nix/store: the Nix store is where all the
software installed through Nix is stored. Now type sl and see
what happens!

You can find the list of available packages here.

1.3 Session 1.2 – Dev Environments
with Nix (2h)

1.3.1 Some Nix concepts

While temporary shells are useful for quick testing, this is not
how Nix is typically used in practice. Nix is a declarative pack-
age manager: users specify what they want to build, and Nix
takes care of the rest.

To do so, users write files called default.nix that contain the
a so-called Nix expression. This expression will contain the def-
inition of a (or several) derivations.

21

https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=

1 Reproducibility with Nix

In Nix terminology, a derivation is a specification for running an
executable on precisely defined input files to repeatably produce
output files at uniquely determined file system paths. (source)

In simpler terms, a derivation is a recipe with precisely defined
inputs, steps, and a fixed output. This means that given iden-
tical inputs and build steps, the exact same output will always
be produced. To achieve this level of reproducibility, several
important measures must be taken:

• All inputs to a derivation must be explicitly declared.
• Inputs include not just data files, but also software depen-

dencies, configuration flags, and environment variables, es-
sentially anything necessary for the build process.

• The build process takes place in a hermetic sandbox to
ensure the exact same output is always produced.

The next sections of this document explain these three points in
more detail.

1.3.2 Derivations

Here is an example of a simple Nix expression:

let
pkgs = import (fetchTarball

"https://github.com/rstats-on-nix/nixpkgs/archive/2025-04-11.tar.gz")
{};

↪

↪

in

pkgs.stdenv.mkDerivation {
name = "filtered_mtcars";

22

https://nix.dev/manual/nix/2.25/language/derivations

1.3 Session 1.2 – Dev Environments with Nix (2h)

buildInputs = [pkgs.gawk];
dontUnpack = true;
src = ./mtcars.csv;
installPhase = ''
mkdir -p $out
awk -F',' 'NR==1 || $9=="1" { print }' $src >
$out/filtered.csv↪

'';
}

I won’t go into details here, but what’s important is that this
code uses awk, a common Unix data processing tool, to filter
the mtcars.csv file to keep only rows where the 9th column
(the am column) equals 1. As you can see, a significant amount
of boilerplate code is required to perform this simple operation.
However, this approach is completely reproducible: the depen-
dencies are declared and pinned to a specific dated branch of
our rstats-on-nix/nixpkgs fork (more on this later), and the
only thing that could make this pipeline fail (though it’s a bit of
a stretch to call this a pipeline) is if the mtcars.csv file is not
provided to it. This expression can be instantiated into a deriva-
tion, and the derivation is then built into the actual output that
interests us, namely the filtered mtcars data.

The derivation above uses the Nix builtin function mkDerivation:
as its name implies, this function makes a derivation. But there
is also mkShell, which is the function that builds a shell instead.
Nix expressions that built a shell is the kind of expressions
{rix} generates for you.

23

1 Reproducibility with Nix

1.3.3 Using {rix} to generate development
environments

If you have successfully installed Nix, but don’t have yet R in-
stalled on your system, you could install R as you would usually
do on your operating system, and then install the {rix} pack-
age, and from there, generate project-specific expressions and
build them. But you could also install R using Nix. Running
the following line in a terminal will drop you in an interactive
R session that you can use to start generating expressions:

nix-shell -p R rPackages.rix

This will drop you in a temporary shell with R and {rix} avail-
able. Navigate to an empty directory to help a project, call it
rix-session-1:

mkdir rix-session-1

and start R and load {rix}:

R

library(rix)

you can now generate an expression by running the following
code:

24

1.3 Session 1.2 – Dev Environments with Nix (2h)

rix(
date = "2025-06-02",
r_pkgs = c("dplyr", "ggplot2"),
py_conf = list(
py_version = "3.13",
py_pkgs = c("polars", "great-tables")

),
ide = "positron",
project_path = ".",
overwrite = TRUE

)

This will write a file called default.nix in your project’s direc-
tory. This default.nix contains a Nix expression which will
build a shell that comes with R, {dplyr} and {ggplot2} as
they were on the the 2nd of June 2025 on CRAN. This will also
add Python 3.13 and the ploars and great-tables Python
packages as they were at the time in nixpkgs (more on this
later). Finally, this also add the Positron IDE, which is a fork
of VS Code for data science. This is just an example, and you
can use another IDE if you wish. See this vignette for learning
how to setup your IDE with Nix.

1.3.4 Using nix-shell to Launch Environments

Once your file is in place, simply run:

nix-shell

This gives you an isolated shell session with all declared packages
available. You can test code, explore APIs, or install further
tools within this session.

25

https://docs.ropensci.org/rix/articles/e-configuring-ide.html

1 Reproducibility with Nix

To remove the packages that were installed, call nix-store
--gc. This will call the garbage collector. If you want to avoid
that an environment gets garbage-collected, use nix-build
instead of nix-shell. This will create a symlink called result
in your project’s root directory and nix-store --gc won’t
garbage-collect this environment until you manually remove
result.

1.3.5 Pinning with nixpkgs

To ensure long-term reproducibility, pin the version of Nixpkgs
used. Replace <nixpkgs> with a fixed import:

let
pkgs = import (fetchTarball

"https://github.com/rstats-on-nix/nixpkgs/archive/2025-06-02.tar.gz")
{};

↪

↪

in
pkgs.mkShell {
buildInputs = [pkgs.r pkgs.rPackages.dplyr];

}

This avoids unexpected updates and lets others reproduce your
environment exactly.

1.4 Configuring your IDE

We now need to configure an IDE to use both our Nix shells as
development environments, and GitHub Copilot. You are free

26

1.4 Configuring your IDE

to use whatever IDE you want but the instructions below are
going to focus on RStudio, VS Code and Positron.

The following are the setups we recommend you use to work
using an IDE and Nix environments. To be recommended, a
setup should:

• be easy to setup;
• work the same on any operating system;
• not require any type of special maintenance.

Regardless of your operating system, a general-purpose editor
such as VS Code (or Codium), Emacs, or Neovim meets the
above requirements. Recent releases of Positron also work
quite well. (Note: Neovim is not covered here due to lack of
experience—PRs welcome!) However, some editors perform
better on certain platforms.

Also, we recommend you uninstall R if it’s installed system-wide
and also remove your local library of packages and instead only
use dedicated Nix shells to manage your projects. While we
made our possible for Nix shells to not interfere with a system-
installed R, we recommend users go into the habit of taking
some minutes at the start of a project to properly set up their
development environment.

1.4.1 Recommended setup on macOS

On macOS, RStudio will only be available through Nix and only
for versions 4.4.3 or more recent, or after the 2025-02-28 if you’re
using dates. For older versions of R or dates, RStudio is not
available for macOS through Nix so you cannot use it. As such,
we recommend either VS Code (or Codium) or Positron for older
dates or versions. Emacs or Neovim are also good options. See

27

1 Reproducibility with Nix

the relevant sections below to set up any of these editors. We
also recommend to install the editor on macOS directly, and
configure it to interact with Nix shells, instead of using Nix to
install the editor, even though it does take some more effort to
configure.

1.4.2 Recommended setup on Windows

On Windows, since you have to use Nix through WSL, your
options are limited to editors that either:

• can be installed on Windows and interact with WSL, or
• can be launched directly from WSL.

We recommend to use an editor you can install directly on Win-
dows and configure to interact nicely with WSL, and it turns
out that this is mostly only VS Code (or Codium) or Positron.
See this section to learn how to configure VS Code (or Codium)
or Positron.

If you want to use RStudio, this is also possible but:

• RStudio should ideally be installed with Nix inside WSL;
• your version of Windows needs to support WSLg which

should be fine on Windows 11 or the very latest Windows
10 builds. WSLg allows you to run GUI apps from WSL.

You should also be aware that there is currently a bug in the
RStudio Nix package that makes RStudio ignore project-specific
.Rprofile files, which can be an issue if you also have a system-
level library of packages. Instead, you can sure the .Rprofile
generated by rix() yourself or you can uninstall the system-
level R and library of packages.

28

https://learn.microsoft.com/en-us/windows/wsl/tutorials/gui-apps

1.4 Configuring your IDE

Furthermore, be aware that there is a bug in WSLg that prevents
modifier keys like Alt Gr from working properly.

If you prefer Emacs or Neovim, then we recommend to install it
in WSL and use it in command line mode, not through WSLg
(so starting Emacs with the - nw argument).

1.4.3 Recommended setup on Linux

On Linux distributions, the only real limitation is that RStudio
cannot interact with Nix shells (just like on the other operating
systems), so if you want to use RStudio then you need to install
it using Nix.

You should also be aware that there is currently a bug in the
RStudio Nix package that makes RStudio ignore project-specific
.Rprofile files, which can be an issue if you also have a system-
level library of packages. Instead, you can sure the .Rprofile
generated by rix() yourself or you can uninstall the system-
level R and library of packages.

If you use another editor, just follow the relevant instructions
below; the question you need to think about is whether you
want to use Nix to install the editor inside of the development
shell or if you prefer to install your editor yourself using your
distribution’s package manager, and configure it to interact with
Nix shells. We recommend the latter option, regardless of the
editor you choose.

1.4.4 RStudio

RStudio must be installed by Nix in order to see and use Nix
shells. So you cannot use the RStudio already installed on your

29

https://github.com/microsoft/wslg/issues/890

1 Reproducibility with Nix

computer to work with Nix shells. This means you need to set
ide = "rstudio" if you wish to use RStudio.

You should also be aware that there is currently a bug in the
RStudio Nix package that makes RStudio ignore project-specific
.Rprofile files, which can be an issue if you also have a system-
level library of packages. Instead, you can sure the .Rprofile
generated by rix() yourself or you can uninstall the system-
level R and library of packages.

1.4.4.1 RStudio on macOS

To use RStudio on macOS simply use ide = "rstudio", but
be aware that this will only work for R version 4.4.3 at least, or
for a date on or after the 2025-02-28. If you don’t need to work
with older versions of R or older date, RStudio is an appropriate
choice. Then, build the environment using nix-build and drop
into the shell using nix-shell. Then, type rstudio to start
RStudio. If you wish, you can even put the rstudio command in
the shell hook to start it immediately as you run nix-shell.

1.4.4.2 RStudio on Linux or Windows

To use RStudio on Linux or Windows simply use ide =
"rstudio". Then, build the environment using nix-build and
drop into the shell using nix-shell. Then, type rstudio to
start RStudio.

If you plan to use RStudio on Ubuntu, then you need further
configuration to make it work, because of newly introduced sand-
boxing features in Ubuntu 24.04. You will need to create an
RStudio-specific AppArmor profile. To do so create this appar-
mor profile:

30

1.4 Configuring your IDE

sudo nano /etc/apparmor.d/nix.rstudio

Populate it with:

profile nix.rstudio
/nix/store/*-RStudio-*-wrapper/bin/rstudio
flags=(unconfined) {

userns,
}

Save it, load the profile and start RStudio:

sudo apparmor_parser -r /etc/apparmor.d/nix.rstudio
sudo systemctl reload apparmor

You can now start RStudio from the activated Nix shell.

On Windows, you need to have WSLg enabled, which should be
the case on the latest versions of Windows. If you wish, you
can even put the rstudio command in the shell hook to start it
immediately as you run nix-shell.

On Linux and WSL, depending on your desktop environment,
and for older versions of RStudio, you might see the following
error message when trying to launch RStudio:

qt.glx: qglx_findConfig: Failed to finding matching
FBConfig for QSurfaceFormat(version 2.0, options
QFlags<QSurfaceFormat::FormatOption>(),
depthBufferSize -1, redBufferSize 1, greenBufferSize
1, blueBufferSize 1, alphaBufferSize -1,
stencilBufferSize -1, samples -1, swapBehavior
QSurfaceFormat::SingleBuffer, swapInterval 1,
colorSpace QSurfaceFormat::DefaultColorSpace,
profile QSurfaceFormat::NoProfile)

31

1 Reproducibility with Nix

Could not initialize GLX
Aborted (core dumped)

in this case, run the following before running RStudio:

export QT_XCB_GL_INTEGRATION=none

To use GitHub Copilot with RStudio, follow these instruc-
tions.

1.4.5 VS Code or Positron

Positron is a fork of VS Code made by Posit and tailored for
data science. Henceforth, I will refer to both editors simply as
Code.

The same instructions apply whether your host operating system
is Linux, macOS or Windows. The first step is of course to
install Code on your operating system using the usual means of
installing software.

If you’re on Windows, install Code on Windows, not in WSL.
Code on Windows is able to interact with WSL seamlessly
and before continuing here, please follow these instructions
(it’s mostly about installing the right extensions after having
installed Positron).

On macOS, start by installing Code using the official .dmg
installer. Start Code, and then the command palette us-
ing COMMAND-SHIFT-P. In the search bar, type "Install
'positron' command in PATH" and click on it: this will make
it possible to start Positron from a terminal.

Once Code is installed, you need to install a piece of software
called direnv: direnv will automatically load Nix shells when

32

https://docs.posit.co/ide/user/ide/guide/tools/copilot.html
https://docs.posit.co/ide/user/ide/guide/tools/copilot.html
https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-vscode

1.4 Configuring your IDE

you open a project that contains a default.nix file in an editor.
It works on any operating system and many editors support
it, including Code. Follow the instructions for your operating
system here but if you’re using Windows, install direnv in WSL
(even though you’ve just installed Code for Windows), so follow
the instructions for whatever Linux distribution you’re using
there (likely Ubuntu), or use Nix to install direnv if you prefer
(this is the way I recommend to install it on macOS, unless you
already use brew):

nix-env -f '<nixpkgs>' -iA direnv

This will install direnv and make it available even outside of
Nix shells!

Then, we highly recommend to install the nix-direnv exten-
sion:

nix-env -f '<nixpkgs>' -iA nix-direnv

It is not mandatory to use nix-direnv if you already have
direnv, but it’ll make loading environments much faster and
seamless. Finally, if you haven’t used direnv before, don’t for-
get this last step.

Then, in Code, install the direnv extension (and also the WSL
extension if you’re on Windows, as explained in the official doc-
umentation linked above!). Finally, add a file called .envrc and
simply write the following two lines in it:

use nix
mkdir $TMP

in it. On Windows, remotely connect to WSL first, but on other
operating systems, simply open the project’s folder using File
> Open Folder... and you will see a pop-up stating direnv:

33

https://direnv.net/docs/installation.html
https://direnv.net/docs/hook.html
https://github.com/direnv/direnv-vscode

1 Reproducibility with Nix

/PATH/TO/PROJECT/.envrc is blocked and a button to
allow it. Click Allow and then open an R script. You might
get another pop-up asking you to restart the extension, so
click Restart. Be aware that at this point, direnv will run
nix-shell and so will start building the environment. If that
particular environment hasn’t been built and cached yet, it
might take some time before Code will be able to interact with
it. You might get yet another popup, this time from the R
Code extension complaining that R can’t be found. In this case,
simply restart Code and open the project folder again: now it
should work every time. For a new project, simply repeat this
process:

• Generate the project’s default.nix file;
• Build it using nix-build;
• Create an .envrc and write the two lines from above in

it;
• Open the project’s folder in Code and click allow when

prompted;
• Restart the extension and Code if necessary.

Another option is to create the .envrc file and write use nix
in it, then open a terminal, navigate to the project’s folder, and
run direnv allow. Doing this before opening Code should not
prompt you anymore.

If you’re on Windows, using Code like this is particularly in-
teresting, because it allows you to install Code on Windows as
usual, and then you can configure it to interact with a Nix shell,
even if it’s running from WSL. This is a very seamless experi-
ence.

Now configure VS Code to use GitHub Copilot, click here or for
Positron click here.

34

https://code.visualstudio.com/docs/copilot/overview
https://positron.posit.co/assistant.html

1.5 Hands-On Exercises

1.5 Hands-On Exercises

1. Start a temporary shell with R and {rix} again using
nix-shell -p R rPackages.rix. Start an R session
(by typing R) and then load the {rix} package (using
library(rix)). Run the available_dates() func-
tion: using the latest available date, generate a new
default.nix.

2. Inside of an activated shell, type which R and echo $PATH.
Explore what is being added to your environment. What
is the significance of paths like /nix/store/...?

3. Break it on purpose: generate a new environment with a
wrong R package name, for example dplyrnaught. Try to
build the environment. What happens?

4. Go to https://search.nixos.org/packages and look for
packages that you usually use for your projects to see if
they are available.

35

https://search.nixos.org/packages

2 Git

What you’ll learn by the end of this chapter: - How to manage
your own data science projects using Git’s core command-line
tools. - How to collaborate effectively with a team using pro-
fessional workflows like Pull Requests and Trunk-Based Devel-
opment. - How to safely review, manage, and integrate code
generated by AI assistants like GitHub Copilot.

37

2 Git

2.1 Introduction

Git is a software for version control. Version control is absolutely
essential in software engineering, or when setting up a RAP. If
you don’t install a version control system such as Git, don’t
even start trying to set up a RAP. But what does a version
control system like Git actually do? The basic workflow of Git
is as follows: you start by setting up a repository for a project.
On your computer, this is nothing more than a folder with your
scripts in it. However, if you’re using Git to keep track of what’s
inside that folder, there will be a hidden .git folder with a
bunch of files in it. You can forget about that folder, this is
for Git’s own internal needs. What matters, is that when you
make changes to your files, you can first commit these changes,
and then push them back to a repository. Collaborators can
copy this repository and synchronize their files saved on their
computers with your changes. Your collaborators can then also
work on the files, then commit and push the changes to the
repository as well.

You can then pull back these changes onto your computer, add
more code, commit, push, etc… Git makes it easy to collaborate
on projects either with other people, or with future you. It is
possible to roll back to previous versions of your code base, you
can create new branches of your project to test new features
(without affecting the main branch of your code), collaborators
can submit patches that you can review and merge, and and
and…

In my experience, learning Git is one of the most difficult things
there is for students. And this is because Git solves a complex
problem, and there is no easy way to solve a complex problem.
But I would however say that Git is not unnescessarily complex.
So buckle up, because this chapter is not going to be easy.

38

2.2 Installing Git

Git is incredibly powerful, and absolutely essential in our line of
work, it is simply not possible to not know at least some basics
of Git. And this is what we’re going to do, learn the basics, it’ll
keep us plenty busy already.

But for now, let’s pause for a brief moment and watch this video
that explains in 2 minutes the general idea of Git.

Let’s get started.

You might have heard of github.com: this is a website that allows
programmers to set up repositories on which they can host their
code. The way to interact with github.com is via Git; but there
are many other website like github.com, such as gitlab.com and
bitbucket.com.

For this course, you should create an account on github.com.
This should be easy enough. Then you should install Git on
your computer.

Another advantage of using GitHub is that, as students, you will
have access to Copilot for free. We will be using Copilot as our
LLM for pair programming throughout the rest of this course.
Get GitHub education here.

2.2 Installing Git

Installing Git is not hard; it installs like any piece of software on
your computer. If you’re running a Linux distribution, chances
are you already have Git installed. To check if it’s already in-
stalled on a Linux system, open a terminal and type which git.
If a path gets returned, like usr/bin/git, congratulations, it’s
installed, if the command returns nothing you’ll have to install it.
On Ubuntu, type sudo apt-get install git and just wait a

39

https://www.youtube.com/watch?v=2ReR1YJrNOM
https://github.com
https://gitlab.com
https://bitbucket.com
https://github.com
https://github.com/education/students

2 Git

bit. If you’re using macOS or Windows, you will need to install
it manually. For Windows, download the installer from here,
and for macOS from here; you’ll see that there are several ways
of installing it on macOS, if you’ve never heard of homebrew or
macports then install the binary package from here.

It would also be possible to install it with Nix, but because Git
is also useful outside of development shells, it is better to have
it installed at the level of your operating system.

Next, configure git:

git config --global user.name "Your Name"
git config --global user.email

"your.email@example.com"↪

2.3 Setting up a repo

Ok so now that Git is installed, we can actually start using it.
First, let’s start by creating a new repository on github.com. As
I’ve mentioned in the introductory paragraph, Git will allow you
to interact with github.com, and you’ll see in what ways soon
enough. For now, login to your github.com account, and create
a new repository by clicking on the ‘plus’ sign in the top right
corner of your profile page and then choose ‘New repository’:

40

https://gitforwindows.org/
https://git-scm.com/download/mac
https://sourceforge.net/projects/git-osx-installer/

2.3 Setting up a repo

In the next screen, choose a nice name for your repository and
ignore the other options, they’re not important for now. Then
click on ‘Create repository’:

41

2 Git

Ok, we’re almost done with the easy part. The next screen tells
us we can start interacting with the repository. For this, we’re
first going to click on ‘README’:

This will add a README file that we can also edit from github.com
directly:

42

2.3 Setting up a repo

Add some lines to the file, and then click on ‘Commit new file’.
You’ll end up on the main page of your freshly created repository.
We are now done with setting up the repository on github.com.
We can now clone the repository onto our machines. For this,
click on ‘Code’, then ‘SSH’ and then on the copy icon:

43

2 Git

Now we’re going to work exclusively from the command line.
While graphical interfaces for Git exist, learning the command
line is essential because:

1. Most servers run Linux and only provide command line
access

2. The command line gives you access to all Git features
3. Understanding the command line makes you more versa-

tile as a developer
4. Many advanced Git operations can only be done from the

command line

2.4 Cloning the repository onto your
computer

Open your terminal (Linux/macOS) or WSL2 if on Windows.
First, let’s navigate to where we want to store our repository.
For example, let’s create a directory for our projects:

mkdir ~/Documents/projects
cd ~/Documents/projects

Now let’s clone the repository. Use the SSH URL you copied
from GitHub:

git clone
git@github.com:yourusername/your-repo-name.git↪

Replace yourusername and your-repo-name with your actual
GitHub username and repository name.

After cloning, navigate into the repository:

44

2.5 Setting up SSH authentication

cd your-repo-name
ls -la

You should see the files from your repository, including the
README file you created, plus a hidden .git directory that
contains Git’s internal files.

2.5 Setting up SSH authentication

Before we can push code from our computer to GitHub, we
need a way to prove that we are who we say we are. While you
can use a username and password (HTTPS), a more secure and
professional method is to use SSH (Secure Shell) keys.

Think of it this way: * HTTPS (Password): Like using a
password to unlock a door. You have to type it in frequently. *
SSH (Key): Like having a special key that unlocks the door
automatically. You set it up once, and it grants you access
without needing to re-enter a password.

We will create a pair of digital keys: a public key that we
will give to GitHub, and a private key that will stay on our
computer. When we try to connect, GitHub will use our public
key to check if we have the matching private key, proving our
identity.

Let’s generate our SSH key pair. We’ll use the modern and
highly secure Ed25519 algorithm. Open your terminal (or WSL2
on Windows) and run the following command, replacing the
email with the one you used for GitHub:

45

2 Git

ssh-keygen -t ed25519 -C "your_email@example.com"

You will be prompted with a few questions. Here is what you’ll
see and how to answer:

Press Enter to accept the default file location
> Enter a file in which to save the key

(/home/your_username/.ssh/id_ed25519): [Press
Enter]

↪

↪

You can optionally set a passphrase.
> Enter passphrase (empty for no passphrase): [Press

Enter]↪

> Enter same passphrase again: [Press Enter]

What about the passphrase? A passphrase adds an extra
layer of security. If someone were to steal your computer, they
still couldn’t use your SSH key without knowing the passphrase.
However, you would have to type it every time you interact
with GitHub. For this course, it is fine to leave it empty for
convenience by simply pressing Enter.

After running the command, two files have been created in a hid-
den directory in your home folder called .ssh: 1. id_ed25519:
This is your private key. NEVER share this file with any-
one or upload it anywhere. It must remain secret on your
computer. 2. id_ed25519.pub: This is your public key. The
.pub stands for “public”. This is the key you can safely share
and will upload to GitHub in the next step.

Note for Older Systems: If the ssh-keygen com-
mand gives an error about ed25519 being an “invalid
option”, your system might be too old to support

46

2.6 Your first commit

it. In that rare case, you can use the older RSA al-
gorithm instead: ssh-keygen -t rsa -b 4096 -C
"your_email@example.com"

Now that we have our key pair, our next task is to give the
public key to GitHub. Let’s display the public key:

cat ~/.ssh/id_ed25519.pub

Copy the entire output (starting with ssh-rsa and ending with
your email).

Go to GitHub.com, click on your profile picture, then Settings
→ SSH and GPG keys → New SSH key. Paste your public key
and give it a descriptive title.

Let’s test the connection:

ssh -T git@github.com

You should see a message confirming successful authentica-
tion.

2.6 Your first commit

Let’s create a simple script and add some code to it (in what
follows, all the code is going to get written into files using the
command line, but you can also use your text editor to do it):

echo 'print("Hello, Git!")' > hello.py

47

2 Git

Or create a more complex example:

cat > analysis.R << 'EOF'
Load data
data(mtcars)

Create a simple plot
plot(mtcars$mpg, mtcars$hp,

xlab = "Miles per Gallon",
ylab = "Horsepower",
main = "MPG vs Horsepower")

EOF

Now let’s check the status of our repository:

git status

You’ll see that Git has detected new untracked files. Let’s add
them to the staging area:

git add .

The . adds all files in the current directory. You can also add
specific files:

git add analysis.R

Let’s check the differences before committing:

48

2.7 Understanding Git workflow commands

git diff --staged

This shows what changes are staged for commit. Now let’s com-
mit with a descriptive message:

git commit -m "Add initial analysis script with
basic plot"↪

Let’s check our commit history:

git log --oneline

Finally, push our changes to GitHub:

git push origin main

2.7 Understanding Git workflow
commands

Here are the essential Git commands you’ll use daily:

Checking status and differences:

git status # Show working directory
status↪

git diff # Show unstaged changes
git diff --staged # Show staged changes
git diff HEAD~1 # Compare with previous

commit↪

49

2 Git

Adding and committing:

git add filename # Stage specific file
git add . # Stage all changes
git commit -m "message" # Commit with message
git commit -am "msg" # Add and commit tracked

files↪

Working with remote repositories:

git push origin main # Push to main branch
git pull origin main # Pull latest changes
git fetch # Download changes without

merging↪

Viewing history:

git log # Show detailed commit
history↪

git log --oneline # Show abbreviated history
git log --graph # Show branching history
git show commit-hash # Show specific commit

details↪

2.8 Working with commit history

Let’s explore how to work with previous versions. First, let’s
make another change:

50

2.9 Collaborating and handling conflicts

echo '# This is a new line' >> analysis.R
git add analysis.R
git commit -m "Add comment to analysis script"

View the commit history:

git log --oneline

To view a previous version without changing anything:

git checkout <commit-hash>
cat analysis.R # View the file at that point in

time↪

You’ll be in “detached HEAD” state. To return to the latest
version:

git checkout main

To permanently revert a commit (creates a new commit that
undoes changes):

git revert <commit-hash>

2.9 Collaborating and handling conflicts

Let’s set up collaboration. Have a colleague invite you to their
repository, or invite someone to yours. On GitHub, go to Set-
tings → Manage access → Invite a collaborator.

Once you’re both collaborators, try this workflow:

51

2 Git

1. Both of you clone the repository
2. One person makes changes and pushes:

echo 'library(ggplot2)' > new_analysis.R
git add new_analysis.R
git commit -m "Add ggplot2 analysis"
git push origin main

3. The other person attempts to push their own changes:

echo 'data(iris)' > iris_analysis.R
git add iris_analysis.R
git commit -m "Add iris analysis"
git push origin main # This will fail!

You’ll get an error like ! [rejected] main -> main
(non-fast-forward). This sounds scary, but it’s Git’s
safe way of telling you: “The remote repository on
GitHub has changes that you don’t have on your
computer. I’m stopping you from pushing because you
would overwrite those changes.”

To solve this, you must first pull the changes from the remote
repository and combine them with your local work. Git gives
you two primary ways to do this: merging and rebasing.

2.9.1 Strategy 1: Merging (The Default)

If you just run git pull, Git will perform a merge. It looks at
the remote changes and your local changes and creates a new,
special “merge commit” to tie the two histories together.

52

2.9 Collaborating and handling conflicts

Imagine the history looks like this: * Your colleague pushed
commit D. * You worked locally and created commit C.

C (Your local work)
/

A---B ---D (Remote work on GitHub)

A git pull (which is git fetch + git merge) will result in
this:

C-------E (Merge commit)
/ /

A---B-------D

The history is now non-linear. While this accurately records
that two lines of work were merged, it can clutter up the project
history with many “Merge branch ‘main’…” commits, making it
harder to read.

2.9.2 Strategy 2: Rebasing (The Cleaner Way)

The second strategy is to rebase. Rebasing does something clever.
It says: “Let me temporarily put your local changes aside. I’ll
download the latest remote changes first. Then, I’ll take your
changes and re-apply them one-by-one on top of the new remote
history.”

Using the same scenario: * Start: C (Your local work)
/ A---B ---D (Remote work on GitHub)

• Running git pull --rebase does this:

1. It “unplugs” your commit C.
2. It fast-forwards your main branch to include D.

53

2 Git

3. It then “re-plays” your commit C on top of D, creating
a new commit C'.

• The final result is a clean, single, linear history:

A---B---D---C' (Your work is now on top)

Your project’s history now looks like you did your work after
your colleague, even if you did it at the same time. This makes
the log much easier to read and understand.

For its clean, linear history, rebasing is the preferred
method in many professional workflows, and it’s the
one we will use.

Now, let’s do it. To pull the remote changes and place your local
commits on top, run:

git pull --rebase origin main

If there are no conflicts, Git will automatically complete the
rebase. Your local work will now be neatly stacked on top of the
remote changes, and your git push will succeed.

If there are conflicts, Git will pause the rebase process and
tell you which files have conflicts. This happens when you and
a collaborator changed the same lines in the same file.

git status # Shows "You are currently rebasing."
and lists conflicted files↪

Your job is to be the surgeon. Open the conflicted files (e.g.,
analysis.R). You will see Git’s conflict markers:

54

2.9 Collaborating and handling conflicts

<<<<<<< HEAD
This is my version of the code
data(iris)
=======
This is their version from the server
data(mtcars)
>>>>>>> a1b2c3d... Add mtcars analysis

Manually edit the file to resolve the conflict. You must delete
the <<<<<<<, =======, and >>>>>>> markers and decide what
the final, correct version of the code should be. For example:

I decided to keep both datasets for now
data(iris)
data(mtcars)

Once you have fixed the file and saved it, you need to tell Git
you’re done:

Mark the conflict as resolved
git add conflicted-file.R

Continue the rebase process
git rebase --continue

Git will continue applying your commits one by one. If you
have another conflict, repeat the process. Once the rebase is
complete, you can finally push your work.

Finally, push your changes:

55

2 Git

git push origin main

This time, it should succeed.

2.10 Working with branches

Branches allow you to work on features without affecting the
main codebase:

Create and switch to a new branch
git checkout -b feature-new-plots

Or use the newer syntax
git switch -c feature-new-plots

List all branches:

git branch

Work on your feature:

echo 'boxplot(mtcars$mpg ~ mtcars$cyl)' >>
analysis.R↪

git add analysis.R
git commit -m "Add boxplot analysis"

Push the branch to GitHub:

56

2.11 Advanced workflow with branches

git push origin feature-new-plots

Switch back to main and merge your feature:

git checkout main
git merge feature-new-plots

If you’re done with the branch, delete it:

git branch -d feature-new-plots # Delete
locally↪

git push origin --delete feature-new-plots # Delete
on GitHub↪

2.11 Advanced workflow with branches

For more complex workflows, you might want to keep branches
separate and use pull requests on GitHub instead of direct merg-
ing:

Create feature branch
git checkout -b feature-advanced-stats
echo 'summary(lm(mpg ~ hp + wt, data = mtcars))' >>

analysis.R↪

git add analysis.R
git commit -m "Add linear regression analysis"
git push origin feature-advanced-stats

Then go to GitHub and create a Pull Request from the web
interface. This allows for code review before merging.

57

2 Git

2.12 Essential daily workflow

Here’s the typical daily workflow:

1. Start your day: Pull latest changes

git pull origin main

2. Create a feature branch:

git checkout -b feature-description

3. Work and commit frequently:

Make changes
git add .
git commit -m "Descriptive commit message"

4. Push your branch:

git push origin feature-description

5. When feature is complete: Merge or create pull re-
quest

git checkout main
git pull origin main # Get latest changes
git merge feature-description
git push origin main

58

2.13 A Better Way to Collaborate: Trunk-Based Development

2.13 A Better Way to Collaborate:
Trunk-Based Development

The “Essential Daily Workflow” you just learned is a great start,
but it leaves one important question unanswered: how long
should a feature branch live? Days? Weeks? Months?

A common mistake for new teams is to let branches live for a
very long time. A data scientist might create a branch called
feature-big-analysis, work on it for three weeks, and then
try to merge it back into main. The result is often what’s called
“merge hell”: main has changed so much in three weeks that
merging the branch back in creates dozens of conflicts and is a
painful, stressful process.

To avoid this, many professional teams use a workflow called
Trunk-Based Development (TBD). The philosophy is sim-
ple but powerful:

All developers integrate their work back into
the main branch (the “trunk”) as frequently
as possible—at least once a day.

This means that feature branches are incredibly short-lived.
Instead of a single, massive feature branch that takes weeks,
you create many tiny branches that each take a few hours or a
day at most.

The goal is to keep the main branch constantly updated with
the latest code from everyone on the team. This has huge bene-
fits: * Fewer Merge Conflicts: Because you are merging small
changes frequently, the chance of conflicting with a teammate’s
work is dramatically lower. * Easier Code Reviews: Review-
ing a small change that adds one function is much easier and

59

2 Git

faster than reviewing a 1,000-line change that refactors an en-
tire analysis. * Continuous Integration: Everyone is working
from the most up-to-date version of the project, which reduces
integration problems and keeps the project moving forward.

2.13.1 How to Work with Short-Lived Branches

But how can you merge something back into main if the feature
isn’t finished? The main branch must always be stable and
runnable. You can’t merge broken code.

The first way to solve this issue is to use feature flags.

A feature flag is just a simple variable (like a TRUE/FALSE switch)
that lets you turn a new, unfinished part of the code on or off.
This allows you to merge the code into main while keeping it
“off” until it’s ready.

Imagine you are adding a new, complex plot to analysis.R, but
it will take a few days to get right.

At the top of your analysis.R script
--- Configuration ---
use_new_scatterplot <- FALSE # Set to FALSE while in

development↪

... lots of existing, working code ...

--- New Feature Code ---
if (use_new_scatterplot) {
All your new, unfinished, possibly-buggy

plotting code goes here.↪

It won't run as long as the flag is FALSE.
library(scatterplot3d)

60

2.13 A Better Way to Collaborate: Trunk-Based Development

scatterplot3d(mtcars$mpg, mtcars$hp, mtcars$wt)
}

With this if block, you can safely merge your changes into main.
The new code is there, but it won’t execute and won’t break the
existing analysis. Other developers can pull your changes and
won’t even notice. Once you’ve finished the feature in subse-
quent small commits, the final change is just to flip the switch:
use_new_scatterplot <- TRUE.

The second strategy is to stack pull requests. This is useful when
a feature is too big for one small change, but it can be broken
down into a logical sequence of steps. For example, to add a
new analysis, you might need to: 1. Add a new data cleaning
function. 2. Use that function to process the data. 3. Generate
a new plot from the processed data.

Instead of putting all this in one giant Pull Request (PR), you
can “stack” them. A stacked PR is a PR that is based on another
PR branch, not on main.

Here’s the workflow: 1. Create the first branch
from main for the first step. bash git switch -c
add-cleaning-function # ...do the work, commit,
and push... Create a Pull Request on GitHub for this branch
(add-cleaning-function -> main).

2. Create the second branch from the first branch.
This is the key step. bash git switch -c
process-the-data # ...do the work that
DEPENDS on the cleaning function...

Create a new PR for this branch. On GitHub, when
you create the PR, manually change the base branch

61

2 Git

from main to add-cleaning-function. Now this PR
only shows the changes for step 2.

Your team can now review and approve add-cleaning-function
first. Once it’s merged into main, you go to your process-the-data
PR on GitHub and change its base back to main. It will now
be ready to merge after a quick update.

This approach breaks down large features into small, logical,
reviewable chunks, keeping your development velocity high while
adhering to the TBD philosophy.

By embracing short-lived branches, feature flags, and stacked
PRs, you can make collaboration smoother, less stressful, and
far more productive.

2.14 Contributing to someone else’s
repository

To contribute to repositories you don’t have write access to:

1. Fork the repository on GitHub (click the Fork button)

2. Clone your fork:

git clone
git@github.com:yourusername/original-repo-name.git↪

cd original-repo-name

3. Add the original repository as upstream:

git remote add upstream
git@github.com:originalowner/original-repo-name.git↪

62

2.15 Working with LLMs and Git: Managing AI-Generated Changes

4. Create a feature branch:

git checkout -b fix-issue-123

5. Make changes and commit:

Make your changes
git add .
git commit -m "Fix issue #123: describe what you

fixed"↪

6. Push to your fork:

git push origin fix-issue-123

7. Create a Pull Request on GitHub from your fork to the
original repository

This workflow is fundamental for contributing to open source
projects and collaborating in professional environments.

The command line approach to Git gives you complete control
and understanding of the version control process, making you a
more effective developer and collaborator.

2.15 Working with LLMs and Git:
Managing AI-Generated Changes

When working with Large Language Models (LLMs) like GitHub
Copilot, ChatGPT, or Claude to generate or modify code, it’s
crucial to review changes carefully before committing them. Git
provides excellent tools for examining and selectively accepting
or rejecting AI-generated modifications.

63

2 Git

2.15.1 The LLM workflow with Git

Here’s a recommended workflow when using LLMs to modify
your code:

1. Always commit your working code first:

git add .
git commit -m "Working state before LLM

modifications"↪

2. Apply LLM suggestions to your files (copy-paste, or
use tools that directly modify files)

3. Review changes chunk by chunk using Git’s tools

4. Selectively accept or reject changes

5. Commit accepted changes with descriptive mes-
sages

2.15.2 Examining LLM changes

After an LLM has modified your files, use Git to see exactly
what changed:

See all modified files
git status

See all changes at once
git diff

See changes in a specific file
git diff analysis.R

64

2.15 Working with LLMs and Git: Managing AI-Generated Changes

See changes with more context (10 lines
before/after)↪

git diff -U10 analysis.R

For a more visual review, you can use Git’s word-level diff:

Show word-by-word changes instead of line-by-line
git diff --word-diff analysis.R

Show character-level changes
git diff --word-diff=color --word-diff-regex=.

2.15.3 Interactive staging: Accepting changes
chunk by chunk

Git’s interactive staging feature (git add -p) is perfect for re-
viewing LLM changes. It lets you review each “hunk” (chunk of
changes) individually:

git add -p

This will show you each chunk of changes and prompt you with
options: - y - stage this hunk - n - do not stage this hunk - q -
quit; do not stage this hunk or any remaining ones - a - stage
this hunk and all later hunks in the file - d - do not stage this
hunk or any later hunks in the file - s - split the current hunk
into smaller hunks - e - manually edit the current hunk - ? -
print help

65

2 Git

2.15.4 Example: Reviewing LLM changes to an
R script

Let’s say an LLM modified your analysis.R file. Here’s how to
review it:

First, see what files were modified
git status

Review the changes
git diff analysis.R

You might see output like:

@@ -1,8 +1,12 @@
Load required libraries

-library(ggplot2)
+library(ggplot2)
+library(dplyr)
+library(tidyr)

Load data
data(mtcars)

+mtcars <- mtcars %>%
+ mutate(efficiency = ifelse(mpg > 20, "High",

"Low"))↪

-# Create a simple plot
-plot(mtcars$mpg, mtcars$hp)
+# Create an improved plot with ggplot2
+ggplot(mtcars, aes(x = mpg, y = hp, color =

efficiency)) +↪

66

2.15 Working with LLMs and Git: Managing AI-Generated Changes

+ geom_point(size = 3) +
+ theme_minimal()

Now use interactive staging to review each change:

git add -p analysis.R

Git will show you each hunk and ask what to do. For example:

@@ -1,2 +1,4 @@
Load required libraries
library(ggplot2)

+library(dplyr)
+library(tidyr)
Stage this hunk [y,n,q,a,d,s,e,?]?

You might decide: - y if you want the additional libraries - n
if you think they’re unnecessary - s to split this into smaller
chunks if you want only one library

2.15.5 Advanced chunk management

Sometimes hunks are too large. Use s to split them:

When prompted with a large hunk
Stage this hunk [y,n,q,a,d,s,e,?]? s

If Git can’t split automatically, use e to manually edit:

67

2 Git

Stage this hunk [y,n,q,a,d,s,e,?]? e

This opens your editor where you can: - Remove lines you don’t
want (delete the entire line) - Keep lines by leaving them as-is
- Lines starting with + are additions - Lines starting with - are
deletions - Lines starting with (space) are context

2.15.6 Creating meaningful commits after LLM
review

After selectively staging changes, commit with descriptive mes-
sages:

Commit the staged changes
git commit -m "Add dplyr and efficiency

categorization↪

- Added dplyr for data manipulation
- Created efficiency category based on mpg > 20
- LLM suggested changes reviewed and approved"

If there are remaining unstaged changes you want
to reject↪

git checkout -- analysis.R # Revert unstaged
changes↪

68

2.15 Working with LLMs and Git: Managing AI-Generated Changes

2.15.7 Working with multiple files modified by
LLM

When an LLM modifies multiple files, review them systemati-
cally:

See all changed files
git status

Review each file individually
git diff analysis.R
git diff data_processing.R
git diff visualization.R

Use interactive staging for each file
git add -p analysis.R
git add -p data_processing.R
... etc

Or stage all changes interactively at once:

git add -p

2.15.8 Handling LLM-generated new files

When an LLM creates entirely new files:

See new files
git status

Review new file content

69

2 Git

cat new_functions.R

Add if you approve
git add new_functions.R

Or ignore if you don't want it
echo "new_functions.R" >> .gitignore

2.15.9 Using Git to compare LLM suggestions

Create a branch to safely experiment with LLM suggestions:

Create a branch for LLM experiments
git checkout -b llm-suggestions

Apply LLM changes
... make modifications ...

Commit the LLM suggestions
git add .
git commit -m "LLM suggestions for code improvement"

Compare with original
git diff main..llm-suggestions

If you like some but not all changes, cherry-pick
specific commits↪

git checkout main
git cherry-pick --no-commit <commit-hash>
git add -p # Selectively stage parts of the

cherry-picked changes↪

git commit -m "Selected improvements from LLM
suggestions"↪

70

2.15 Working with LLMs and Git: Managing AI-Generated Changes

2.15.10 Best practices for LLM + Git workflow

1. Always commit working code before applying LLM
suggestions

2. Never blindly accept all LLM changes - review each
modification

3. Use descriptive commit messages that mention LLM
involvement

4. Test code after accepting LLM suggestions before
final commit

5. Keep LLM-generated changes in separate commits
for easier tracking

6. Use branches for experimental LLM suggestions
7. Document why you accepted or rejected specific

suggestions

2.15.11 Example complete workflow

1. Save current working state
git add .
git commit -m "Working analysis script before LLM

optimization"↪

2. Apply LLM suggestions (manually copy-paste or
use tools)↪

... LLM modifies your files ...

3. Review all changes

71

2 Git

git status
git diff

4. Interactively stage only the changes you want
git add -p

5. Commit approved changes
git commit -m "LLM improvements: added data

validation and error handling↪

Reviewed and approved:
- Input validation for data loading
- Error handling for missing values
- Improved variable naming

Rejected:
- Overly complex optimization that hurt readability"

6. Discard remaining unwanted changes
git checkout .

7. Test the code
Rscript analysis.R # or python script.py

8. Push if everything works
git push origin main

This workflow ensures you maintain full control over your code-
base while benefiting from LLM assistance, with complete trace-
ability of what changes were made and why.

72

3 Functional Programming:
The Cornerstone of
Reproducible Analysis

What you’ll learn by the end of this chapter: * Why functional
programming is crucial for reproducible, testable, and collabo-
rative data science. * How to write self-contained, “pure” func-

73

3 Functional Programming: The Cornerstone of Reproducible Analysis

tions in both R and Python. * How to use functional concepts
like map, filter, and reduce to replace error-prone loops. *
How writing functions makes your code easier to review, debug,
and even generate with LLMs.

3.1 Introduction: From Scripts to
Functions

So far, we’ve established two pillars of reproducible data science:
1. Reproducible Environments (with Nix): Ensuring ev-
eryone has the exact same tools (R, Python, system libraries)
to run the code. 2. Reproducible History (with Git): En-
suring everyone has the exact same version of the code and can
collaborate effectively.

Now we turn to the third and arguably most important pillar:
writing reproducible code itself. A common way to start
a data analysis is by writing a script: a sequence of commands
that are executed from top to bottom.

R script example
library(dplyr)
data(mtcars)
heavy_cars <- filter(mtcars, wt > 4)
mean_mpg_heavy <- mean(heavy_cars$mpg)
print(mean_mpg_heavy)

Python script example
import pandas as pd
mtcars = pd.read_csv("mtcars.csv") # Assume the file

exists↪

74

3.1 Introduction: From Scripts to Functions

heavy_cars = mtcars[mtcars['wt'] > 4]
mean_mpg_heavy = heavy_cars['mpg'].mean()
print(mean_mpg_heavy)

This works, but it has a hidden, dangerous property: state. The
script relies on variables like heavy_cars existing in the envi-
ronment, making the code hard to reason about, debug, and
test. If scripting with state is a crack in the foundation of re-
producibility, then using computational notebooks is a gaping
hole.

Notebooks like Jupyter introduce an even more insidious form
of state: the cell execution order. You can execute cells out of
order, meaning the visual layout of your code has no relation
to how it actually ran. This is a recipe for non-reproducible
results and a primary cause of the “it worked yesterday, why is
it broken today?” problem.

The solution to this chaos is to embrace a paradigm that mini-
mizes state: Functional Programming (FP). Instead of a linear
script, we structure our code as a collection of self-contained,
predictable functions. To support this, we will work exclusively
in plain text files (.R, .py), which enforce a predictable, top-to-
bottom execution, and use literate programming (using Quarto).
The power of FP comes from the concept of purity, borrowed
from mathematics. A mathematical function has a beautiful
property: for a given input, it always returns the same output.
sqrt(4) is always 2. Its result doesn’t depend on what you
calculated before or on a random internet connection. Our Nix
environments handle the “right library” problem; purity handles
the “right logic” problem. Our goal is to write our analysis code
with this same level of rock-solid predictability.

75

3 Functional Programming: The Cornerstone of Reproducible Analysis

3.1.1 Why Does This Matter for Data Science?

Adopting a functional style brings massive benefits that directly
connect to our previous chapters:

1. Unit Testing is Now Possible: You can’t easily test a
200-line script. But you can easily test a small function
that does one thing. Does calculate_mean_mpg(data)
return the correct value for a sample dataset? This makes
your code more reliable.

2. Code Review is Easier (Git Workflow): As we saw in
the Git chapter, reviewing a small, self-contained change
is much easier than reviewing a giant, sprawling one. A
Pull Request that just adds or modifies a single function is
simple for your collaborators to understand and approve.

3. Working with LLMs is More Effective: It’s difficult
to ask an LLM to “fix my 500-line analysis script.” It’s
incredibly effective to ask, “Write a Python function that
takes a pandas DataFrame and a column name, and re-
turns the mean of that column, handling missing values.
Also, write three pytest unit tests for it.” Functions pro-
vide the clear boundaries and contracts that LLMs excel
at working with.

4. Readability and Maintainability: Well-named
functions are self-documenting. starwars %>%
group_by(species) %>% summarize(mean_height
= mean(height)) is instantly understandable. The
equivalent for loop is a puzzle you have to solve.

76

3.2 Purity and Side Effects

3.2 Purity and Side Effects

A pure function has two rules: 1. It only depends on its
inputs. It doesn’t use any “global” variables defined outside the
function. 2. It doesn’t change anything outside of its own scope.
It doesn’t modify a global variable or write a file to disk. This
is called having “no side effects.”

Consider this “impure” function in Python:

IMPURE: Relies on a global variable
discount_rate = 0.10

def calculate_discounted_price(price):
return price * (1 - discount_rate) # What if

discount_rate changes?↪

print(calculate_discounted_price(100))
> 90.0
discount_rate = 0.20 # Someone changes the state
print(calculate_discounted_price(100))
> 80.0 -- Same input, different output!

The pure version passes all its dependencies as arguments:

PURE: All inputs are explicit arguments
def calculate_discounted_price_pure(price, rate):

return price * (1 - rate)

print(calculate_discounted_price_pure(100, 0.10))
> 90.0
print(calculate_discounted_price_pure(100, 0.20))
> 80.0

77

3 Functional Programming: The Cornerstone of Reproducible Analysis

Now the function is predictable and self-contained.

3.2.1 Handling “Impure” Operations like
Randomness

Some operations, like generating random numbers, are
inherently impure. Each time you run rnorm(10) or
numpy.random.rand(10), you get a different result.

The functional approach is not to avoid this, but to control it
by making the source of impurity (the random seed) an explicit
input.

In R, the {withr} package helps create a temporary, controlled
context:

library(withr)

This function is now pure! For a given seed, the
output is always the same.↪

pure_rnorm <- function(n, seed) {
with_seed(seed, {
rnorm(n)

})
}

pure_rnorm(n = 5, seed = 123)
pure_rnorm(n = 5, seed = 123)

In Python, numpy provides a more modern, object-oriented way
to handle this, which is naturally functional:

78

3.2 Purity and Side Effects

import numpy as np

Create a random number generator instance with a
seed↪

rng = np.random.default_rng(seed=123)

Now, calls on this 'rng' object are deterministic
within its context↪

print(rng.standard_normal(5))

If we re-create the same generator, we get the
same numbers↪

rng2 = np.random.default_rng(seed=123)
print(rng2.standard_normal(5))

The key is the same: the “state” (the seed) is explicitly managed,
not hidden globally.

However, this introduces a concept from another programming
paradigm: Object-Oriented Programming (OOP). The
rng variable is not just a value; it’s an object that bundles
together data (its internal seed state) and methods that operate
on that data (.standard_normal()). This is called encapsu-
lation. This is a double-edged sword for reproducibility. On
one hand, it’s a huge improvement over hidden global state.
On the other, the rng object itself is now a stateful entity. If
we called rng.standard_normal(5) a second time, it would
produce different numbers because its internal state would have
been mutated by the first call.

In a purely functional world, we would avoid creating such
stateful objects. However, in the pragmatic world of Python
data science, this is often unavoidable. Core libraries like
pandas, scikit-learn, and matplotlib are fundamentally

79

3 Functional Programming: The Cornerstone of Reproducible Analysis

object-oriented. You create DataFrame objects, model objects,
and plot objects, all of which encapsulate state. Our guiding
principle, therefore, must be one of careful management: use
functions for the flow and logic of your analysis, and
treat objects from libraries as values that are passed
between these functions. Avoid building your own complex
classes with hidden state for your data pipeline. A pipeline
composed of functions (df2 = clean_data(df1); df3 =
analyze_data(df2)) is almost always more transparent and
reproducible than an object-oriented one (pipeline.load();
pipeline.clean(); pipeline.analyze()).

3.2.2 Can We Make This Truly Pure?

This naturally raises this next question: can we force this numpy
example to be truly pure? A pure function cannot have side
effects, which means it cannot mutate the rng object’s internal
state. To achieve this, our function must take the generator’s
current state as an explicit input and return a tuple containing
both the desired random numbers and the new, updated state
of the generator.

Let’s write a wrapper function that does exactly this:

import numpy as np

def pure_standard_normal(generator_state,
n_samples):↪

"""
A pure function to generate standard normal
random numbers.↪

Args:

80

3.2 Purity and Side Effects

generator_state: The current state of a
numpy BitGenerator.↪

n_samples: The number of samples to
generate.↪

Returns:
A tuple containing (random_numbers,

new_generator_state).↪

"""
1. Create a temporary generator instance from

the input state↪

temp_rng =
np.random.Generator(np.random.PCG64(generator_state))↪

2. Generate the numbers (this mutates the
temporary generator)↪

numbers = temp_rng.standard_normal(n_samples)

3. Extract the new state from the temporary
generator↪

new_state = temp_rng.bit_generator.state

4. Return both the result and the new state
return (numbers, new_state)

--- How to use this pure function ---

1. Get an initial state from a seed
initial_state = np.random.PCG64(123).state

2. First call: provide the state, get back numbers
and a *new* state↪

first_numbers, state_after_first_call =
pure_standard_normal(initial_state, 5)↪

81

3 Functional Programming: The Cornerstone of Reproducible Analysis

print("First call results:", first_numbers)

3. Second call: MUST use the new state from the
previous call↪

second_numbers, state_after_second_call =
pure_standard_normal(state_after_first_call, 5)↪

print("Second call results:", second_numbers)

Proof of purity: If we re-use the initial state,
we get the exact same "first" result↪

proof_numbers, _ =
pure_standard_normal(initial_state, 5)↪

print("Proof call results:", proof_numbers)

As you can see, this is now 100% pure and predictable. The
function pure_standard_normal will always produce the same
output tuple for the same input tuple.

3.2.2.1 Is This Feasible in Practice?

While this is a powerful demonstration of functional principles,
it is often not practical for day-to-day data science in Python.
Manually passing the state variable from one function to the
next throughout an entire analysis script (state_1, state_2,
state_3…) would be extremely verbose and cumbersome.

The key takeaway is understanding the trade-off. The object-
oriented approach (rng = np.random.default_rng(seed=123))
is a pragmatic compromise. It encapsulates the state in a pre-
dictable way, which is a vast improvement over hidden global
state, even if it’s not technically “pure”. If you have to use
Python: treat stateful library objects like rng as values

82

3.2 Purity and Side Effects

that are created once with a fixed seed and passed into
your pure analysis functions. This gives you 99% of the
benefit of reproducibility with a fraction of the complexity.

This difference in the “feel” of functional composition between
R’s pipe and Python’s method chaining is no accident; it reflects
the deep-seated design philosophies of each language. This con-
text is crucial for understanding why certain patterns feel more
“natural” in each environment. R’s lineage traces back to the
S language, which was itself heavily influenced by Scheme, a
dialect of Lisp and a bastion of functional programming. Con-
sequently, treating data operations as a series of function trans-
formations is baked into R’s DNA. The entire Tidyverse ecosys-
tem, with its ubiquitous pipe, is a modern implementation of
this functional heritage.

Python, in contrast, was designed with a different set of prior-
ities, famously summarized in its Zen: “There should be one—
and preferably only one—obvious way to do it.” Its creator,
Guido van Rossum, historically argued that explicit for loops
and list comprehensions were more readable and “Pythonic”
than functional constructs like map and lambda. He was so
committed to this principle of one clear path that he even pro-
posed removing these functions from the language entirely at
one point.

R is fundamentally a functional language that has acquired
object-oriented features, while Python is a quintessential object-
oriented language with powerful functional capabilities. Recog-
nizing this history helps explain why a chain of functions feels
native in R, while method chaining on objects is the default in
pandas and polars. My goal in this course is for you to master
the functional paradigm so you can apply it effectively in either
language, leveraging the native strengths of each.

83

3 Functional Programming: The Cornerstone of Reproducible Analysis

3.3 Writing Your Own Functions

Let’s learn the syntax. The goal is always to encapsulate a single,
logical piece of work.

3.3.0.1 In R

R functions are first-class citizens. You can assign them to vari-
ables and pass them to other functions.

A simple function
calculate_ci <- function(x, level = 0.95) {
Calculate the mean and standard error
se <- sd(x, na.rm = TRUE) / sqrt(length(x))
mean_val <- mean(x, na.rm = TRUE)

Calculate the confidence interval bounds
alpha <- 1 - level
lower <- mean_val - qnorm(1 - alpha/2) * se
upper <- mean_val + qnorm(1 - alpha/2) * se

Return a named vector
the `return()` statement is not needed at the

end↪

but can be useful for early returning a result
c(mean = mean_val, lower = lower, upper = upper)

}

Use it
data <- c(1.2, 1.5, 1.8, 1.3, 1.6, 1.7)
calculate_ci(data)

84

3.3 Writing Your Own Functions

For data analysis, you’ll often want to write functions that work
with data frames and column names. The {dplyr} package uses
a special technique called “tidy evaluation” for this.

library(dplyr)

A function that summarizes a column in a dataset
summarize_variable <- function(dataset,

var_to_summarize) {↪

dataset %>%
summarise(
n = n(),
mean = mean({{ var_to_summarize }}, na.rm =

TRUE),↪

sd = sd({{ var_to_summarize }}, na.rm = TRUE)
)

}

The {{ }} (curly-curly) syntax tells dplyr to use
the column name↪

passed into the function.
starwars %>%

group_by(species) %>%
summarize_variable(height)

This is incredibly powerful for creating reusable analysis snip-
pets. To learn more, read about programming with {dplyr}
here.

3.3.0.2 In Python

Python’s syntax is similar, using the def keyword. Type hints
are a best practice for clarity.

85

https://dplyr.tidyverse.org/articles/programming.html

3 Functional Programming: The Cornerstone of Reproducible Analysis

import pandas as pd
import numpy as np

A function to summarize a column in a DataFrame
def summarize_variable_py(dataset: pd.DataFrame,

var_to_summarize: str) -> pd.DataFrame:↪

"""Calculates summary statistics for a given
column."""↪

summary = dataset.groupby('species').agg(
n=(var_to_summarize, 'size'),
mean=(var_to_summarize, 'mean'),
sd=(var_to_summarize, 'std')

).reset_index()
return summary

Load data (assuming starwars.csv exists)
starwars_py = pd.read_csv("starwars.csv")
summarize_variable_py(starwars_py, 'height')

3.4 The Functional Toolkit: Map, Filter,
and Reduce

Once you start thinking in functions, you’ll notice common
patterns emerge. Most for loops can be replaced by one
of three core functional concepts: mapping, filtering, or
reducing. These operations are handled by “higher-order
functions”—functions that take other functions as arguments.
Mastering them is key to writing elegant, declarative code.

86

3.4 The Functional Toolkit: Map, Filter, and Reduce

3.4.1 1. Mapping: Applying a Function to Each
Element

The pattern: You have a list of things, and you want to per-
form the same action on each element, producing a new list of
the same length.

This is the most common replacement for a for loop. Instead
of manually iterating and storing results, you just state your
intent: “map this function over this list.”

3.4.1.1 In R with purrr::map()

The {purrr} package is the gold standard for functional pro-
gramming in R. The map() family is its workhorse.

• map(): Always returns a list.
• map_dbl(): Returns a vector of doubles (numeric).
• map_chr(): Returns a vector of characters (strings).
• map_lgl(): Returns a vector of logicals (booleans).
• map_dfr(): Returns a data frame by row-binding the re-

sults.

Example: Calculate the mean of every column in a data
frame.

library(purrr)

The classic for-loop way (verbose and clunky)
Allocate an empty vector with the right size
means_loop <- vector("double", ncol(mtcars))

for (i in seq_along(mtcars)) {

87

3 Functional Programming: The Cornerstone of Reproducible Analysis

means_loop[[i]] <- mean(mtcars[[i]], na.rm = TRUE)
}

print(means_loop)

The functional way with map_dbl()
means_functional <- map_dbl(mtcars, mean, na.rm =

TRUE)↪

print(means_functional)

The map() version is not just shorter; it’s safer. You can’t
make an off-by-one error, and you don’t have to pre-allocate
means_loop. The code clearly states its purpose.

3.4.1.2 In Python with List Comprehensions and map()

Python’s most idiomatic tool for mapping is the list compre-
hension, which we saw earlier. It’s concise and highly read-
able.

numbers = [1, 2, 3, 4, 5]
squares = [n**2 for n in numbers]
> [1, 4, 9, 16, 25]

Python also has a built-in map() function, which returns a “map
object” (an iterator). You usually wrap it in list() to see
the results. It’s most useful when you already have a function
defined.

88

3.4 The Functional Toolkit: Map, Filter, and Reduce

def to_upper_case(s: str) -> str:
return s.upper()

words = ["hello", "world"]
upper_words = list(map(to_upper_case, words))
> ['HELLO', 'WORLD']

3.4.2 2. Filtering: Keeping Elements That
Match a Condition

The pattern: You have a list of things, and you want to keep
only the elements that satisfy a certain condition. The condition
is defined by a function that returns TRUE or FALSE.

3.4.2.1 In R with purrr::keep() or purrr::discard()

keep() retains elements where the function returns TRUE.
discard() does the opposite.

Example: From a list of data frames, keep only the ones with
more than 100 rows.

setup: create a list of data frames
df1 <- data.frame(x = 1:50)
df2 <- data.frame(x = 1:200)
df3 <- data.frame(x = 1:75)
list_of_dfs <- list(a = df1, b = df2, c = df3)

The functional way to filter the list
large_dfs <- keep(list_of_dfs, ~ nrow(.x) > 100)
print(names(large_dfs))

89

3 Functional Programming: The Cornerstone of Reproducible Analysis

3.4.2.2 In Python with List Comprehensions

List comprehensions have a built-in if clause that makes filter-
ing incredibly natural.

numbers = [1, 10, 5, 20, 15, 30]

Keep only numbers greater than 10
large_numbers = [n for n in numbers if n > 10]
> [20, 15, 30]

Python also has a built-in filter() function, which, like map(),
returns an iterator.

def is_even(n: int) -> bool:
return n % 2 == 0

numbers = [1, 2, 3, 4, 5, 6]
even_numbers = list(filter(is_even, numbers))
> [2, 4, 6]

3.4.3 3. Reducing: Combining All Elements into
a Single Value

The pattern: You have a list of things, and you want to iter-
atively combine them into a single summary value. You start
with an initial value and repeatedly apply a function that takes
the “current total” and the “next element.”

This is the most complex of the three but is powerful for things
like summing, finding intersections, or joining a list of data
frames.

90

3.4 The Functional Toolkit: Map, Filter, and Reduce

3.4.3.1 In R with purrr::reduce()

Example: Find the total sum of a vector of numbers.

reduce() will take the first two elements (1, 2),
apply `+` to get 3.↪

Then it takes the result (3) and the next element
(3), applies `+` to get 6.↪

And so on.
total_sum <- reduce(c(1, 2, 3, 4, 5), `+`)

This is equivalent to 1 + 2 + 3 + 4 + 5
print(total_sum)

A more practical data science example: find all the column
names that are common to a list of data frames.

Get the column names of each df in the list
list_of_colnames <- map(list_of_dfs, names)
print(list_of_colnames)

Use reduce with the `intersect` function to find
common elements↪

common_cols <- reduce(list_of_colnames, intersect)
print(common_cols)

3.4.3.2 In Python with functools.reduce

The reduce function was moved out of the built-ins and into the
functools module in Python 3 because it’s often less readable
than an explicit for loop for simple operations like summing.

91

3 Functional Programming: The Cornerstone of Reproducible Analysis

However, it’s still the right tool for more complex iterative com-
binations.

from functools import reduce
import operator

numbers = [1, 2, 3, 4, 5]

Use reduce with the addition operator to sum the
list↪

total_sum_py = reduce(operator.add, numbers)
> 15

You can also use a lambda function
total_product = reduce(lambda x, y: x * y, numbers)
> 120

3.5 The Power of Composition

The final, beautiful consequence of a functional style is com-
position. You can chain functions together to build complex
workflows from simple, reusable parts. This is exactly what the
pipe operators (|> in R, %>% from {magrittr}) and method
chaining (the . in pandas) are designed for.

This R code is a sequence of function compositions:

starwars %>%
filter(!is.na(mass)) %>%
select(species, sex, mass) %>%
group_by(sex, species) %>%
summarise(mean_mass = mean(mass), .groups =

"drop")↪

92

3.5 The Power of Composition

This is equivalent to summarise(group_by(select(filter(starwars,
...)))). The pipe makes it readable.

The same idea applies in Python with pandas:

(starwars_py
.dropna(subset=['mass'])
.filter(items=['species', 'sex', 'mass'])
.groupby(['sex', 'species'])
['mass'].mean()
.reset_index()
)

Each step is a function that takes a data frame and returns a
new, transformed data frame. By combining map, filter, and
reduce with this compositional style, you can express complex
data manipulation pipelines without writing a single for loop.
This makes your code more declarative, less prone to bugs, and
easier to reason about—a perfect fit for a reproducible work-
flow.

93

4 Unit Testing: The Safety
Net for Your Code

What you’ll learn by the end of this chapter: * What unit tests
are and why they are essential for reliable data analysis. * How
to write and run unit tests for your functions in both R (with
{testthat}) and Python (with pytest). * How to use testing
to improve the design and robustness of your code. * How to

95

4 Unit Testing: The Safety Net for Your Code

leverage LLMs to accelerate test writing and embrace your role
as a code reviewer.

4.1 Introduction: Proving Your Code
Works

I hope you are starting to see the pieces of our reproducible
workflow coming together. We now have:

1. Reproducible Environments (Nix): The correct tools
for everyone.

2. Reproducible History (Git): The correct version of
the code for everyone.

3. Reproducible Logic (Functional Programming):
A philosophy for writing clean, predictable, and self-
contained code.

This brings us to the final, crucial question: How do we prove
that our functions actually do what we claim they do?

The answer is unit testing. A unit test is a piece of code whose
sole job is to check that another piece of code, a “unit”, works
correctly. In our functional world, the “unit” is almost always
a single function. This is why we spent so much time on FP in
the previous chapter. Small, pure functions are not just easy to
reason about; they are incredibly easy to test.

Writing tests is your contract with your collaborators and
your future self. It’s a formal promise that your function,
calculate_mean_mpg(), given a specific input, will always
produce a specific, correct output. It’s the safety net that
catches bugs before they make it into your final analysis and

96

4.2 The Philosophy of a Good Unit Test

the tool that gives you the confidence to refactor and improve
your code without breaking it.

4.2 The Philosophy of a Good Unit Test

So, what should we test? Writing good tests is a skill, but
it revolves around answering a few key questions about your
function. For any function you write, you should have tests that
cover:

• The “Happy Path”: Does the function return the ex-
pected, correct value for a typical, valid input?

• Bad Inputs: Does the function fail gracefully or throw
an informative error when given garbage input (e.g., a
string instead of a number, a data frame with the wrong
columns)?

• Edge Cases: How does the function handle tricky but
valid inputs? For example, what happens if it receives an
empty data frame, a vector with NA values, or a vector
where all the numbers are the same?

Writing tests forces you to think through these scenarios, and
in doing so, almost always leads you to write more robust and
well-designed functions.

4.3 Unit Testing in Practice

Let’s imagine we’ve written a simple helper function to normal-
ize a numeric vector (i.e., scale it to have a mean of 0 and a
standard deviation of 1). We’ll save this in a file named utils.R
or utils.py.

97

4 Unit Testing: The Safety Net for Your Code

R version (utils.R):

normalize_vector <- function(x) {
(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)

}

Python version (utils.py):

import numpy as np

def normalize_vector(x):
return (x - np.nanmean(x)) / np.nanstd(x)

Now, let’s write tests for it.

4.3.1 Testing in R with {testthat}

In R, the standard for unit testing is the {testthat} package.
The convention is to create a tests/testthat/ directory in your
project, and for a script utils.R, you would create a test file
named test-utils.R.

Inside test-utils.R, we use the test_that() function to group
related expectations.

In file: tests/testthat/test-utils.R

First, we need to load the function we want to
test↪

source("../../utils.R")

98

4.3 Unit Testing in Practice

library(testthat)

test_that("Normalization works on a simple vector
(the happy path)", {↪

1. Setup: Create input and expected output
input_vector <- c(10, 20, 30)
expected_output <- c(-1, 0, 1)

2. Action: Run the function
actual_output <- normalize_vector(input_vector)

3. Expectation: Check if the actual output
matches the expected output↪

expect_equal(actual_output, expected_output)
})

test_that("Normalization handles NA values
correctly", {↪

input_with_na <- c(10, 20, 30, NA)
expected_output <- c(-1, 0, 1, NA)

actual_output <- normalize_vector(input_with_na)

We need to use expect_equal because it knows how
to compare NAs↪

expect_equal(actual_output, expected_output)
})

The expect_equal() function checks for near-exact equal-
ity. {testthat} has many other expect_*() functions, like
expect_error() to check that a function fails correctly, or
expect_warning() to check for warnings.

99

4 Unit Testing: The Safety Net for Your Code

4.3.2 Testing in Python with pytest

In Python, the de facto standard is pytest. It’s incredibly sim-
ple and powerful. The convention is to create a tests/ directory,
and your test files should be named test_*.py. Inside, you just
write functions whose names start with test_ and use Python’s
standard assert keyword.

In file: tests/test_utils.py

import numpy as np
from utils import normalize_vector # Import our

function↪

def test_normalize_vector_happy_path():
1. Setup
input_vector = np.array([10, 20, 30])
expected_output = np.array([-1.0, 0.0, 1.0])

2. Action
actual_output = normalize_vector(input_vector)

3. Expectation
For floating point numbers, it's better to

check for "close enough"↪

assert np.allclose(actual_output,
expected_output)↪

def test_normalize_vector_with_nas():
input_with_na = np.array([10, 20, 30, np.nan])
expected_output = np.array([-1.0, 0.0, 1.0,
np.nan])↪

actual_output = normalize_vector(input_with_na)

100

4.4 Testing as a Design Tool

`np.allclose` doesn't handle NaNs, but
`np.testing.assert_allclose` does!↪

np.testing.assert_allclose(actual_output,
expected_output)↪

To run your tests, you simply navigate to your project’s root
directory in the terminal and run the command pytest. It will
automatically discover and run all your tests for you.

4.4 Testing as a Design Tool

Here is where testing becomes a superpower. What happens
if we try to normalize a vector where all the elements are the
same? The standard deviation will be 0, leading to a division
by zero!

Let’s write a test for this edge case first.

pytest version:

tests/test_utils.py
def test_normalize_vector_with_zero_std():

input_vector = np.array([5, 5, 5, 5])
actual_output = normalize_vector(input_vector)
The current function will return `[nan, nan,

nan, nan]`↪

Let's assert that we expect a vector of zeros
instead.↪

assert np.allclose(actual_output, np.array([0,
0, 0, 0]))↪

101

4 Unit Testing: The Safety Net for Your Code

If we run pytest now, this test will fail. This is great! Our test
has just revealed a flaw in our function’s design. This process
is a core part of Test-Driven Development (TDD): write a
failing test, then write the code to make it pass.

Let’s improve our function:

Improved Python version (utils.py):

import numpy as np

def normalize_vector(x):
std_dev = np.nanstd(x)
if std_dev == 0:
If std is 0, all elements are the mean. Return

a vector of zeros.↪

return np.zeros_like(x, dtype=float)
return (x - np.nanmean(x)) / std_dev

Now, if we run pytest again, our new test will pass. We used
testing not just to verify our code, but to actively make it more
robust and thoughtful.

4.5 The Modern Data Scientist’s Role:
Reviewer and AI Collaborator

In the past, writing tests was often seen as a chore. Today, LLMs
make this process very easy.

102

4.5 The Modern Data Scientist’s Role: Reviewer and AI Collaborator

4.5.1 Using LLMs to Write Tests

LLMs are fantastic at writing unit tests. They are good at
handling boilerplate code and thinking of edge cases. You can
provide your function to an LLM and give it a prompt like this:

Prompt: “Here is my Python function normalize_vector.
Please write three pytest unit tests for it. Include
a test for the happy path with a simple array, a
test for an array containing np.nan, and a test for
the edge case where all elements in the array are
identical.”

The LLM will likely generate high-quality test code that is very
similar to what we wrote above. This is a massive productivity
boost. However, this introduces a new, critical role for the data
scientist: you are the reviewer.

An LLM does not write your tests; it generates a draft. It is your
professional responsibility to: 1. Read and understand every
line of the test code. 2. Verify that the expected_output is
actually correct. 3. Confirm that the tests cover the cases you
care about. 4. Commit that code under your name, taking full
ownership of it.

“A COMPUTER CAN NEVER BE HELD ACCOUNTABLE
THEREFORE A COMPUTERMUST NEVERMAKE AMAN-
AGEMENT DECISION” – IBM Training Manual, 1979.

If I ask you why you did something, and your answer is some-
thing to the effect of “I dunno, the LLM generated it”, be glad
we’re not in the USA where I could just fire you, because that’s
what I’d do.

103

4 Unit Testing: The Safety Net for Your Code

4.5.2 Testing and Code Review

This role as a reviewer is central to modern collaborative data
science. When a teammate (or your future self) submits a Pull
Request on GitHub, the tests are your first line of defense. A
PR that changes logic but doesn’t update the tests is a major
red flag. A PR that adds a new feature without adding any tests
should be rejected until tests are included.

Even as a junior member of a team, one of the most valuable
contributions you can make during a code review is to ask: “This
looks great, but what happens if the input is NA? Could we add a
test for that case?” This moves the quality of the entire project
forward.

By embracing testing, you are not just writing better code; you
are becoming a better collaborator and a more responsible data
scientist.

4.5.3 A Note on Packaging and Project
Structure

Throughout this chapter, we’ve focused on testing individual
functions within a simple project structure (utils.R and
tests/test-utils.R). This is the fundamental skill. It’s
important to recognize, however, that this entire process
becomes even more streamlined and robust when your code is
organized into a formal package.

Packaging your code provides a standardized structure for your
functions, documentation, and tests. It solves many logistical
problems automatically: testing frameworks know exactly where
to find your source code without needing manual source() or
from utils import ... statements, and tools can easily run

104

4.5 The Modern Data Scientist’s Role: Reviewer and AI Collaborator

all tests with a single command. It also makes your code instal-
lable, versionable, and distributable, which is the ultimate form
of reproducibility.

While a full guide to package development is beyond the scope of
this course, it is the natural next step in your journey as a data
scientist who produces reliable tools. When you are ready to
take that step, here are the definitive resources to guide you:

• For R: The “R Packages” (2e) book by Hadley Wickham
and Jennifer Bryan is the essential, comprehensive guide.
It covers everything from initial setup with {usethis} to
testing, documentation, and submission to CRAN. Read
it online here.

• For Python: The official Python Packaging User
Guide is the place to start. For a more modern and
streamlined approach that handles dependency manage-
ment and publishing, many developers use tools like Po-
etry or Hatch.

Treating your data analysis project like a small, internal software
package, complete with functions and tests, is a powerful mind-
set that will elevate the quality and reliability of your work.

4.5.4 Hands-On Exercises

For these exercises, create a project directory with a tests/
subdirectory. Place your function code in a script in the
root directory (e.g., my_functions.R or my_functions.py)
and your test code inside the tests/ directory (e.g.,
tests/test_my_functions.R or tests/test_my_functions.py).

105

https://r-pkgs.org/
https://r-pkgs.org/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://python-poetry.org/docs/
https://python-poetry.org/docs/
https://hatch.pypa.io/latest/

4 Unit Testing: The Safety Net for Your Code

4.5.4.1 Exercise 1: Testing the “Happy Path”

The median of a list of numbers is a common calculation. How-
ever, the logic is slightly different depending on whether the list
has an odd or even number of elements. Your task is to test
both of these “happy paths.”

Here is the function in R and Python.

R (my_functions.R):

calculate_median <- function(x) {
sorted_x <- sort(x)
n <- length(sorted_x)
mid <- floor(n / 2)

if (n %% 2 == 1) {
Odd number of elements
return(sorted_x[mid + 1])

} else {
Even number of elements
return(mean(c(sorted_x[mid], sorted_x[mid +

1])))↪

}
}

Python (my_functions.py):

import numpy as np

def calculate_median(x):
sorted_x = np.sort(np.array(x))
n = len(sorted_x)
mid = n // 2

106

4.5 The Modern Data Scientist’s Role: Reviewer and AI Collaborator

if n % 2 == 1:
Odd number of elements
return sorted_x[mid]

else:
Even number of elements
return (sorted_x[mid - 1] + sorted_x[mid]) / 2.0

Your Task: 1. Create a test file (test-my_functions.R or
tests/test_my_functions.py). 2. Write a test that checks
if calculate_median gives the correct result for a vector with
an odd number of elements (e.g., c(10, 20, 40)). 3. Write a
second test that checks if calculate_median gives the correct
result for a vector with an even number of elements (e.g., [1,
2, 8, 10]).

4.5.4.2 Exercise 2: Testing Edge Cases and Expected
Errors

The geometric mean is another way to calculate an average, but
it has strict requirements: it only works with non-negative num-
bers. This makes it a great candidate for testing edge cases and
expected failures.

R (my_functions.R):

calculate_geometric_mean <- function(x) {
if (any(x < 0)) {
stop("Geometric mean is not defined for negative

numbers.")↪

}
return(prod(x)^(1 / length(x)))

107

4 Unit Testing: The Safety Net for Your Code

}

Python (my_functions.py):

import numpy as np

def calculate_geometric_mean(x):
if np.any(np.array(x) < 0):

raise ValueError("Geometric mean is not defined
for negative numbers.")↪

return np.prod(x)**(1 / len(x))

Your Task: Write three tests for this function: 1. A
“happy path” test with a simple vector of positive num-
bers (e.g., c(1, 2, 4) should result in 2). 2. An
edge case test for a vector that includes 0. The expected
result should be 0. 3. An error test that confirms the
function fails correctly when given a vector with a neg-
ative number. * In R, use testthat::expect_error().
* In Python, use pytest.raises(). Example: with
pytest.raises(ValueError): your_function_call()

4.5.4.3 Exercise 3: Test-Driven Development (in
miniature)

Testing can help you design better functions. Here is a simple
function that is slightly flawed. Your task is to use testing to
find the flaw and fix it.

R (my_functions.R):

108

4.5 The Modern Data Scientist’s Role: Reviewer and AI Collaborator

Initial flawed version
find_longest_string <- function(string_vector) {

This will break on an empty vector!
string_vector[which.max(nchar(string_vector))]

}

Python (my_functions.py):

Initial flawed version
def find_longest_string(string_list):

This will break on an empty list!
return max(string_list, key=len)

Your Task: 1. Part A: Write a simple test to prove the
function works for a standard case (e.g., c("a", "b", "abc")
should return "abc"). 2. Part B: Write a new test for
an empty input (c() or []). Run your tests. This test
should fail with an error. 3. Part C: Modify the original
find_longest_string function in your source file to handle
the empty input gracefully (e.g., it could return NULL in R, or
None in Python). 4. Run your tests again. Now all tests should
pass. You have just completed a mini-cycle of Test-Driven
Development!

4.5.4.4 Exercise 4: The AI Collaborator

One of the most powerful uses of LLMs is to accelerate the
creation of tests. Your job is to act as the senior reviewer for
the code an LLM generates.

Here is a simple data cleaning function in Python.

Python (my_functions.py):

109

4 Unit Testing: The Safety Net for Your Code

import pandas as pd

def clean_sales_data(df: pd.DataFrame) ->
pd.DataFrame:↪

"""
Cleans a raw sales DataFrame.
- Renames 'ts' column to 'timestamp'.
- Converts 'timestamp' column to datetime objects.
- Ensures 'sale_value' is a numeric type.
"""
if 'ts' not in df.columns:

raise KeyError("Input DataFrame must contain a
'ts' column.")↪

df = df.rename(columns={'ts': 'timestamp'})
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['sale_value'] = pd.to_numeric(df['sale_value'])
return df

Your Task: 1. Prompt your LLM: Copy the function above
and give your LLM a prompt like this: > “You are a helpful
assistant writing tests for a Python data science project. Here
is a function. Please write a pytest test file for it. Include a
test for the happy path where everything works correctly. Also,
include a test that verifies the function raises a KeyError if the
‘ts’ column is missing.”

2. Act as the Reviewer:
• Create a new test file (tests/test_data_cleaning.py)

and paste the LLM’s response.
• Read every line of the generated test code. Is the

logic correct? Is the expected_output data frame
what you would actually expect?

110

4.5 The Modern Data Scientist’s Role: Reviewer and AI Collaborator

• Run the tests using pytest. Do they pass? If not,
debug and fix them. It is your responsibility to ensure
the final committed code is correct.

• Add a comment at the top of the test file describing
one thing the LLM did well and one thing you had
to change or fix (e.g., # LLM correctly set
up the test for the KeyError, but I had to
correct the expected data type in the
happy path test.).

111

5 Building Reproducible
Pipelines with Nix and
{rixpress}

What you’ll have learned by the end of the chapter: how to or-
chestrate a fully reproducible, polyglot analytical pipeline using
Nix as a build automation tool, and why this is a fundamentally

113

5 Building Reproducible Pipelines with Nix and {rixpress}

more robust approach than using computational notebooks or
other common workflow tools.

5.1 Introduction: From Scripts and
Notebooks to Pipelines

So far, we have learned about the 3 main necessary pillars for
building reproducible pipelines:

1. Define Reproducible Environments with Nix and
{rix} to ensure everyone uses the exact same versions of
R, Python, and all system-level dependencies.

2. Manage Reproducible History with Git to track every
change to our code and collaborate effectively.

3. Write Reproducible Logic with Functional Program-
ming to create clean, testable, and predictable functions.

The last pillar is orchestration.

How do we take our collection of functions and data files and
run them in the correct order to produce our final data product?
This problem of managing computational workflows is not new,
and a whole category of build automation tools has been
created to solve it.

The original solution to this problem, dating back to the 1970s,
is make. Created by Stuart Feldman at Bell Labs in 1976, make
was born out of frustration. Feldman, working on his Fortran
programs, was tired of the tedious and error-prone process of
manually re-compiling only the necessary parts of his code after
making a change. He designed make to read a Makefile that
describes the dependency graph of a project. You tell it that
report.pdf depends on plot.png. If you change the code that

114

5.1 Introduction: From Scripts and Notebooks to Pipelines

generates plot.png, make is smart enough to only re-run the
steps needed to rebuild the plot and the final report. General-
purpose tools like waf follow a similar philosophy.

The strength of these tools is their language-agnosticism, but
their weakness is that they only track files and know nothing
about the software environment needed to create those files.
Another limitaton of these generic tools is that they are file-
centric. This means that you are responsible for manually han-
dling all input and output. Your first script must explicitly save
its result as data.csv, and your second script must explicitly
load data.csv. This adds boilerplate code and creates a new
surface for errors.

This is where a specialized tool like R’s {targets} package
shines. {targets} tracks dependencies between R objects di-
rectly, not just files. When you pass a data frame from one
step to the next, {targets} automatically handles the serial-
ization for you (serialization is the process of saving an object
into a binary to disk) behind the scenes and loads it back when
needed. This is a massive ergonomic improvement, allowing you
to think in terms of data objects, not file paths.

The Python ecosystem, while rich in tools, lacks a single, dom-
inant tool that offers the same lightweight, object-centric feel
as {targets} for everyday analysis. Tools like Snakemake are
powerful but often follow the make model of file-based I/O. Oth-
ers like Luigi or Airflow are typically used for large-scale data
engineering but can be overkill for a typical analytical project.
This gap highlights the need for a solution that combines an er-
gonomic, object-passing interface with robust reproducibility.

Furthermore, all these tools, from make to {targets} to
Airflow, separate workflow management from environment
management. You use one tool to run the pipeline and another

115

5 Building Reproducible Pipelines with Nix and {rixpress}

(like conda, Docker, or {renv}) to set up the software. But
what if we could use a single, declarative system to manage
both?

This is why we will also be using Nix for build automation. Nix
is not just a package manager; it is a full-fledged build system.
When Nix builds a pipeline, it controls the entire dependency
graph, from your input data files all the way down to the C
compiler used to build R itself. It unifies the “what to run and
when” problem with the “what tools to use” problem into a
single, cohesive framework.

However, writing build instructions directly in the Nix language
can be complex. This is where {rixpress} comes in. It provides
a user-friendly R interface, heavily inspired by {targets}, that
lets us define our pipeline in familiar R code. {rixpress} then
translates this into the necessary Nix expressions for us. We
get the ergonomic, object-passing feel of {targets} with the
unparalleled, bit-for-bit reproducibility of the Nix build system.
It is the perfect tool to complete our reproducible workflow.

116

5.2 Our First Polyglot Pipeline

5.2 Our First Polyglot Pipeline

Let’s start with a simple pipeline. Our goal will be to read the
mtcars dataset, perform some initial filtering in Python with
{polars}, pass the result to R for further manipulation with
{dplyr}, and finally compile a Quarto document that presents
the results.

First, let’s create a new project directory. Inside, we’ll bootstrap
our project. If you’re in a terminal, you can get a temporary
shell with the necessary tools by running:

nix-shell --expr "$(curl -sl
https://raw.githubusercontent.com/ropensci/rix/main/inst/extdata/default.nix)"↪

Once inside this temporary shell, start R and run:

117

5 Building Reproducible Pipelines with Nix and {rixpress}

rixpress::rxp_init()

This handy function creates two essential plain text files:
gen-env.R and gen-pipeline.R.

5.2.1 Step 0: Use Git

This might be the right time to start a Git repository. Either
start by creating an empty project on GitHub, or start from
your command line, locally:

git init

5.2.2 Step 1: Defining the Environment

Open gen-env.R. This is where we use {rix} to define the tools
our pipeline needs.

In gen-env.R
library(rix)

Define execution environment for our polyglot
pipeline↪

rix(
date = "2025-06-02",
r_pkgs = c("dplyr", "quarto", "reticulate",

"jsonlite"),↪

py_conf = list(
py_version = "3.13",
py_pkgs = c("polars", "pyarrow", "pandas")

118

5.2 Our First Polyglot Pipeline

),
git_pkgs = list(
package_name = "rixpress",
repo_url =

"https://github.com/b-rodrigues/rixpress",↪

commit = "HEAD"
),
ide = "none",
project_path = ".",
overwrite = TRUE

)

Run this script (source("gen-env.R")) to generate the
default.nix file that describes our complete environment.
Now, exit the temporary shell, build your project environment
with nix-build, and enter it with nix-shell.

5.2.3 Step 2: Defining the Pipeline

Now, open gen-pipeline.R. This plain text file is where we’ll
define the actual pipeline. {rixpress} offers several ways to
pass data between languages.

A pipeline is a list of derivations. A derivation is defined using
functions such as rxp_r(), rxp_py(), etc. Most of the time, we
start by importing data. In this case, we will be importing a
.csv file (which you can download here and save it in the data/
folder) using polars:

In gen-pipeline.R
library(rixpress)

119

https://raw.githubusercontent.com/b-rodrigues/rixpress_demos/refs/heads/master/r_py_json/data/mtcars.csv

5 Building Reproducible Pipelines with Nix and {rixpress}

list(
rxp_py_file(
name = mtcars_pl,
path = "data/mtcars.csv",
read_function = "lambda x: polars.read_csv(x,

separator='|')"↪

),
...

)

We use the rxp_py_file() function to define a derivation
that reads in the .csv file using the read_csv() function
from polars. When importing data using rxp_py_file()
or (rxp_r_file()), the read_function argument must be a
function of a single argument, the path to the data.

Next, we want to filter the dataset:

In gen-pipeline.R
library(rixpress)

list(
rxp_py_file(
name = mtcars_pl,
path = 'data/mtcars.csv',
read_function = "lambda x: polars.read_csv(x,

separator='|')"↪

),
Note: polars must be converted to pandas for

reticulate↪

rxp_py(
name = mtcars_pl_am,
py_expr = "mtcars_pl.filter(polars.col('am') ==

1).to_pandas()"↪

120

5.2 Our First Polyglot Pipeline

),
...

The next derivation is defined using rxp_py() which runs Pyton
code. As you can see, the py_expr argument is literal Python
code, where polars is used to filter data and then convert the
result to a pandas data frame.

To pass data to R, we have two methods available.

5.2.3.1 Method 1: Using Language-Specific Converters

The rxp_r2py() and rxp_py2r() functions are convenient wrap-
pers that use the {reticulate} package behind the scenes to
convert objects:

rxp_py2r(
name = mtcars_am_r,
expr = mtcars_pl_am

),
...

This converts the mtcars_pl_am data frame (which is a
pandas data frame) into an R data frame using the R package
{reticulate}.

We can then continue with an R derivation:

rxp_r(
name = mtcars_head,
expr = head(mtcars_am_r)

),
...

121

5 Building Reproducible Pipelines with Nix and {rixpress}

This works well, but it tightly couples your pipeline to
{reticulate}’s conversion capabilities, which in some cases
could be overkill.

5.2.3.2 Method 2: A lighter Approach with Universal Data
Formats

A lighter and language-agnostic approach is to use a universal
data format like JSON. This makes your pipeline more
modular, as any language that can read and write JSON
could be added in the future. {rixpress} supports this
via the serialize_function and unserialize_function
arguments.

Let’s rewrite our pipeline to use JSON. First, we need simple
helper functions in our project.

Create a script called functions.py that will contain all the
Python helper functions we might need. In it, add:

A function to save a polars DataFrame to a JSON
file↪

def serialize_to_json(pl_df, path):
with open(path, 'w') as f:

f.write(pl_df.write_json())

Do the same for R functions, in functions.R:

Just aliasing head for demonstration
my_head <- head

122

5.2 Our First Polyglot Pipeline

Now, we can update gen-pipeline.R to use these helpers:

library(rixpress)

list(
....

rxp_py(
name = mtcars_pl_am,
py_expr = "mtcars_pl.filter(polars.col('am') ==

1)",↪

additional_files = "functions.py",
serialize_function = "serialize_to_json" # Use

our Python helper↪

),

rxp_r(
name = mtcars_head,
expr = my_head(mtcars_pl_am),
additional_files = "functions.R",
unserialize_function = "jsonlite::fromJSON" #

Use R's jsonlite↪

),
...

)

This approach works well in simple cases like passing data frames
between languages, but may not work for more complex objects
for which {reticulate} may have specialized code for conver-
sion.

123

5 Building Reproducible Pipelines with Nix and {rixpress}

5.2.4 Step 3: Building and Inspecting the
Pipeline

The complete pipeline will look like this:

library(rixpress)

list(
rxp_py_file(
name = mtcars_pl,
path = 'data/mtcars.csv',
read_function = "lambda x: polars.read_csv(x,

separator='|')"↪

),
Note: polars must be converted to pandas for

reticulate↪

rxp_py(
name = mtcars_pl_am,
py_expr = "mtcars_pl.filter(polars.col('am') ==

1).to_pandas()"↪

),
rxp_py(
name = mtcars_pl_am,
py_expr = "mtcars_pl.filter(polars.col('am') ==

1)",↪

additional_files = "functions.py",
serialize_function = "serialize_to_json" # Use

our Python helper↪

),

rxp_r(
name = mtcars_head,
expr = my_head(mtcars_pl_am),

124

5.3 Caching

additional_files = "functions.R",
unserialize_function = "jsonlite::fromJSON" #

Use R's jsonlite↪

),
) |>

rixpress()

The very last function, rixpress() takes a list of derivations
as input and will translate the list of derivations into a
pipeline.nix file and instruct Nix to build the entire pipeline.
Once it’s done, you can use rxp_inspect() to check which
artifacts where built, and you can easily access the any of
them:

Check out all artifacts
rxp_inspect()

Load the mtcars_head data frame into your R
session↪

rxp_load("mtcars_head")

You can now inspect it
head(mtcars_head)

You can also only generate the required code, but not run the
pipeline yet, by setting build = FALSE in rixpress().

5.3 Caching

First, visualize your pipeline’s dependency graph:

125

5 Building Reproducible Pipelines with Nix and {rixpress}

You'll need to firts generate the required files
by running↪

`rixpress(...)` or `rixpress(..., build = FALSE)`
first↪

Then you can visualize the graph
rxp_ggdag()

This will show you a clear, unambiguous graph of your work-
flow.

Now, modify a step. Open gen-pipeline.R and change the
my_head function in functions.R to use tail() for example.
Save the file and re-run rixpress(). Nix will detect that the
data loading and Python filtering steps are unchanged and in-
stantly use the cached results from the /nix/store/. It will
only re-build the final R step that was affected by the change.

This is the incredible power of a proper build automation tool.
The cognitive load of tracking what to re-run is gone. You are
free to experiment, confident that the tool will efficiently and
correctly rebuild only what is necessary.

5.4 Debugging and Working with Build
Logs

But what happens to the old results? What if you want to
compare the head() version of your data to the tail() ver-
sion? This is where {rixpress}’s build logging becomes a su-
perpower.

126

5.4 Debugging and Working with Build Logs

Every time you run rixpress(), a timestamped log of that spe-
cific build is saved in the _rixpress/ directory. This is like
having a Git history for your pipeline’s outputs.

You can list all the past builds you’ve run:

rxp_list_logs()
#>

filename modification_time↪

#> 1
build_log_20250602_143015_a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6.rds
2025-06-02 14:30:15

↪

↪

#> 2
build_log_20250602_142500_z9y8x7w6v5u4t3s2r1q0p9o8n7m6l5k4.rds
2025-06-02 14:25:00

↪

↪

Let’s say the first log (...a1b2c3d...) is our new tail() run,
and the second (...z9y8x7w...) is our original head() run.
You can now pull the artifact from the old run directly into
your current session for comparison:

Load the result from the MOST RECENT build
new_result <- rxp_read("mtcars_head")

Load the result from the PREVIOUS build by
matching part of its log name↪

old_result <- rxp_read("mtcars_head", which_log =
"z9y8x")↪

Now you can compare them!
new_result
old_result

127

5 Building Reproducible Pipelines with Nix and {rixpress}

This is an incredibly powerful debugging and validation tool.
You can go back in time to inspect the state of any output from
any previous pipeline run, as long as it’s still in the Nix store.
This provides a safety net and traceability that is simply absent
in a notebook-based workflow.

5.5 Running Someone Else’s Pipeline:
The Ultimate Test of Reproducibility

Imagine a collaborator wants to run your pipeline. If you had
sent them a Jupyter notebook, they would face a series of ques-
tions: “Which version of Python did you use? What packages do
I need? In what order do I run the cells? What is this variable
that’s used but never defined?”

With our Nix-based workflow, the process is radically simpler
and more robust. All they need to do is:

1. git clone your repository (which, unlike a notebook, has
a clean, readable history).

2. Run nix-build, then nix-shell in the project directory.
3. Start an R session, and build the pipeline by running the

gen-pipeline.R script, or by running rxp_make().

That’s it. Nix reads your default.nix and pipeline.nix files
and builds the exact same environment and the exact same data
product, bit-for-bit. It solves all the problems we identified with
other approaches: it controls the language versions, the operat-
ing system libraries, and all dependencies in one unified, declar-
ative system.

You now have the knowledge to build robust, efficient, poly-
glot, and truly reproducible analytical pipelines. By abandoning

128

5.5 Running Someone Else’s Pipeline: The Ultimate Test of Reproducibility

the chaos of notebooks for production work and embracing the
structured, automatable world of plain text files and build au-
tomation, your work becomes more reliable, more scalable, and
fundamentally more scientific.

Peng, Roger D. 2011. “Reproducible Research in Computational
Science.” Science 334 (6060): 1226–27.

129

	Introduction
	Schedule
	Reproducible analytical pipelines?
	Data products?
	Machine learning?
	What actually is reproducibility?
	The requirements of a RAP

	Large Language Models
	Why R? Why not [insert your favourite programming language]
	Nix
	Pre-requisites
	Grading
	Jargon
	Further reading
	License

	Reproducibility with Nix
	Learning Outcomes
	Why Reproducibility? Why Nix? (2h)
	Motivation: Reproducibility in Scientific and Data Workflows
	Problems with Ad-Hoc Tools
	Nix, a declarative package manager
	The rix package
	Installing Nix
	Temporary shells

	Session 1.2 – Dev Environments with Nix (2h)
	Some Nix concepts
	Derivations
	Using {rix} to generate development environments
	Using nix-shell to Launch Environments
	Pinning with nixpkgs

	Configuring your IDE
	Recommended setup on macOS
	Recommended setup on Windows
	Recommended setup on Linux
	RStudio
	VS Code or Positron

	Hands-On Exercises

	Git
	Introduction
	Installing Git
	Setting up a repo
	Cloning the repository onto your computer
	Setting up SSH authentication
	Your first commit
	Understanding Git workflow commands
	Working with commit history
	Collaborating and handling conflicts
	Strategy 1: Merging (The Default)
	Strategy 2: Rebasing (The Cleaner Way)

	Working with branches
	Advanced workflow with branches
	Essential daily workflow
	A Better Way to Collaborate: Trunk-Based Development
	How to Work with Short-Lived Branches

	Contributing to someone else's repository
	Working with LLMs and Git: Managing AI-Generated Changes
	The LLM workflow with Git
	Examining LLM changes
	Interactive staging: Accepting changes chunk by chunk
	Example: Reviewing LLM changes to an R script
	Advanced chunk management
	Creating meaningful commits after LLM review
	Working with multiple files modified by LLM
	Handling LLM-generated new files
	Using Git to compare LLM suggestions
	Best practices for LLM + Git workflow
	Example complete workflow

	Functional Programming: The Cornerstone of Reproducible Analysis
	Introduction: From Scripts to Functions
	Why Does This Matter for Data Science?

	Purity and Side Effects
	Handling ``Impure'' Operations like Randomness
	Can We Make This Truly Pure?

	Writing Your Own Functions
	The Functional Toolkit: Map, Filter, and Reduce
	1. Mapping: Applying a Function to Each Element
	2. Filtering: Keeping Elements That Match a Condition
	3. Reducing: Combining All Elements into a Single Value

	The Power of Composition

	Unit Testing: The Safety Net for Your Code
	Introduction: Proving Your Code Works
	The Philosophy of a Good Unit Test
	Unit Testing in Practice
	Testing in R with {testthat}
	Testing in Python with pytest

	Testing as a Design Tool
	The Modern Data Scientist's Role: Reviewer and AI Collaborator
	Using LLMs to Write Tests
	Testing and Code Review
	A Note on Packaging and Project Structure
	Hands-On Exercises

	Building Reproducible Pipelines with Nix and {rixpress}
	Introduction: From Scripts and Notebooks to Pipelines
	Our First Polyglot Pipeline
	Step 0: Use Git
	Step 1: Defining the Environment
	Step 2: Defining the Pipeline
	Step 3: Building and Inspecting the Pipeline

	Caching
	Debugging and Working with Build Logs
	Running Someone Else's Pipeline: The Ultimate Test of Reproducibility

