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Abstract

Reproducible analysis requires more than clean, well-documented code; it demands the
precise management of software dependencies, computational environments, and workflow
execution. While researchers can combine tools like Docker, renv for R packages (or
uv for Python packages) and Make to address these needs, the resulting toolchain is
often complex and fragile, requiring the coordination of multiple disparate systems. This
paper introduces a unified framework built on the Nix package manager, made accessible
through two R packages. The first, rix, generates declarative Nix expressions to define
version-pinned, reproducible environments that encompass R, Python, Julia, and system-
level dependencies. The second, rixpress (and its Python port, ryxpress), leverages these
environments to orchestrate polyglot pipelines where each computational step runs in a
hermetically sealed, language-specific environment with automatic caching. By treating
the entire computational environment as code, this integrated approach ensures a high
degree of reproducibility, supports collaboration across heterogeneous systems, and helps
guarantee that analyses remain executable long into the future.

Keywords: reproducibility, R, Python, Julia, Nix.

1. Introduction: Reproducibility is also about software

Peng (2011) introduced the concept of reproducibility as a continuum. At one end lies the
least reproducible state, where only a paper describing the study is available. Reproducibility
improves when authors share the original source code, improves further when they include
the underlying data, and reaches its highest level when what Roger Peng called linked and
executable code and data are provided.

By linked and executable code and data, Peng referred to compiled source code and runnable
scripts. In this paper, we interpret this notion more broadly as the computational environment:
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the complete set of software required to execute an analysis. Here too, a continuum exists. At
the minimal end, authors might only name the main software used—say, the R programming
language (R Core Team 2021). More careful authors might also specify the version of R,
or list the additional packages and their versions. Rarely, however, do authors specify the
operating system on which the analysis was performed, even though differences in operating
systems can lead to divergent results when using the same code and software versions, as
shown by Bhandari Neupane, Neupane, Luo, Yoshida, Sun, and Williams (2019). It is even
less common for authors to provide step-by-step installation instructions for the required
software stack, an omission often driven by institutional constraints. Journals, for instance,
can inadvertently hinder reproducibility by imposing strict page or word limits that leave no
room for the necessary technical documentation, discouraging thoroughness in the name of
brevity.

Even when such instructions are given, they often fail across different platforms or versions
of the same platform. This lack of portability not only hinders reproducibility but also
complicates everyday research workflows. Researchers using multiple machines must recreate
environments consistently, and collaborators must share identical computational setups to
avoid inconsistencies.

Finally, once the execution environment is correctly configured, additional clarity is needed
on how to run the project itself. Which packages should be loaded first? Which scripts should
be executed, and in what order? Without clear documentation or automated orchestration,
these operational details become yet another barrier to reproducibility.

This paper focuses on two critical but often overlooked aspects of reproducibility: computa-
tional environment management and workflow orchestration. We present a comprehensive
framework addressing both challenges using the Nix package manager (Dolstra, De Jonge,
and Visser 2004), making it accessible to researchers through two R packages: rix and rix-
press. Before introducing these packages, we survey existing tools and their limitations to
contextualise our contributions.

A range of tools now exist to help researchers approach the gold standard of full reproducibility,
or to consistently deploy the same development environment across multiple machines. Let
us first consider the most basic step in this process: listing the software used. In R, the
sessionInfo() function provides a concise summary of the software environment, including
the R version, platform details, and all loaded packages. Its output can be saved to a file
and included as part of a study’s reproducibility record. Below is an example output from
sessionInfo():

R> sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: aarch64-unknown-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS

Matrix products: default
BLAS: /usr/lib/aarch64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/aarch64-linux-gnu/openblas-pthread/libopenblasp[...]

locale:
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LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
...

attached base packages:
stats graphics grDevices utils datasets methods base

other attached packages:
nnet_7.3-19 mgcv_1.9-0 nlme_3.1-163

loaded via a namespace (and not attached):
compiler_4.3.2 Matrix_1.6-1.1 tools_4.3.2 splines_4.3.2
grid_4.3.2 lattice_0.21-9

When an author includes this information, others attempting to reproduce the study (future
readers, collaborators, or even the author at a later time) can see which version of R and
which packages (with their versions) were used. However, reproducing the environment still
requires manually installing the correct package versions — a process that becomes difficult
when packages depend on system-level libraries. For example, the sf package requires GDAL,
GEOS, and PROJ libraries. Installing and configuring these dependencies varies substantially
across operating systems and can be prohibitively difficult on some platforms.

A more robust approach than simply listing package versions is to use tools that define
per-project environments. This is common for Python (Van Rossum and Drake 2009) users,
who have many tools at their disposal, such as the built-in virtual environments module, or
third-party tools like uv (Astral 2024), which manages both project-specific interpreters and
package libraries using a lock file mechanism.

In the R ecosystem, virtual environments are not built-in as they are in Python, however tools
like renv provide equivalent functionality. renv captures the project’s software state and
writes it to a lock file (renv.lock), which includes the exact versions of R and all required
packages. This lockfile serves as a blueprint for restoring the environment automatically,
ensuring others can recreate the same setup with minimal effort.

However, both renv and uv have limitations. While uv manages Python interpreter versions
directly, renv does not restore the version of R itself—installing the correct version must be
done separately using tools like rig (R Infrastructure 2023). More critically, neither handles
system-level dependencies. If sf requires GDAL version 3.0 but the system has version 2.4
installed, neither tool can resolve this conflict. Users must manually install system libraries,
and the process differs across operating systems.

Other R packages such as groundhog (Simonsohn and Gruson 2023) and rang (hong Chan
and Schoch 2023) enable date-based package installation, while the Posit Package Manager
provides dated CRAN snapshots. However, like renv, these focus on R packages and do
not address system-level dependencies or R version management. Furthermore, using pre-
compiled binaries of packages simplifies installation but do not eliminate the need for system
libraries required at runtime. These tools represent significant progress in reproducibility
within their ecosystems, but they share a common limitation: none handles system-level
dependencies or the increasingly polyglot nature of modern data science.
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Indeed, there is evidence that the era of a single tool dominating an entire analytical pipeline
is giving way to a more pragmatic approach where researchers combine the complementary
strengths of multiple languages (Peng, Wang, Ma, Leong, Wakefield, Melott, Chiu, Du, and
Weinstein 2018). This trend is particularly evident in the synergistic use of R, with its rich
ecosystem for statistical modeling, Python, with its extensive libraries for machine learning,
and Julia for complex simulations through the use of interoperability libraries such as Python-
Call (calling Python from Julia), JuliaCall (calling Julia from Python or R), reticulate (calling
Python from R), rpy2 and ryp (calling R from Python) (Osborne, Pivarski, and Ling 2024;
Navarro, Koneva, Sánchez-Macián, and Hernández 2024). Recent survey data confirms this
trend, showing that research scientists use, on average, nearly two programming languages in
their work, with the R and Python combination being the most prevalent (Chen, Wong, Sharif,
and Peruma 2025). This creates a significant challenge for reproducibility: a project using
R, Python, and system tools like Quarto or LATEXrequires coordinating multiple, disparate
package managers, each with its own configuration and potential for conflict and using inter-
operability libraries.

The demand for solutions that can manage this complexity is not merely academic; it is
reflected in major strategic shifts within the industry. A prominent example is the evolution
of Posit (formerly RStudio), which has pivoted from its origins as a premier R-centric service
and software supplier to a company that treats Python as a first-class citizen alongside R.
This industry trend, coupled with the proliferation of academic research into polyglot tooling,
underscores a critical reality: the central challenge for modern reproducible science is no
longer if polyglot workflows should be used, but how they can be managed in a unified,
efficient, and reproducible manner.

The most comprehensive approach to managing a complete computational environment to
date is containerization, for which Docker has become the de facto standard. Docker’s prin-
cipal strength lies in its capacity to package an entire data product—including the operating
system, all system-level libraries, programming language runtimes, and packages—into a sin-
gle, self-contained artifact known as an image. Once this image is built, the analysis can be
executed within a container, which is a running instance of that image. This methodology
effectively solves the problem of missing system-level dependencies; because Docker images
are typically minimal Linux systems, they can bundle the specific versions of libraries like
GDAL or GEOS required by packages such as sf. These images can then be shared via public
registries, enabling a high degree of reproducibility across different host systems. The Rocker
project, for instance, provides invaluable pre-built Docker images tailored for the R commu-
nity, offering a convenient foundation for reproducible research environments (Boettiger and
Eddelbuettel 2017).

However, while Docker excels at providing this form of spatial reproducibility, its application
in interactive research workflows reveals several significant limitations. First, the container
model is often poorly aligned with the iterative, interactive nature of data analysis. Running
graphical applications like RStudio Desktop requires complex and platform-specific configura-
tion, while ephemeral container filesystems mean that changes made during a session are lost
by default. Consequently, a common workflow involves developing an analysis interactively
on a host system and only containerizing it post-hoc, which achieves reproducibility as an
afterthought rather than as a continuous guarantee during the research process. Packages
like dockerfiler (Fay, Guyader, Parry, and Rochette 2024) are specifically made to enable this
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type of post-hoc reproducibility.

Second, the effective use of Docker introduces a considerable learning curve. Authoring
a reliable and truly reproducible Dockerfile requires a degree of familiarity with Linux
system administration. Best practices, such as referencing base images by their immutable
content digests rather than mutable tags, are necessary for long-term stability but are not
widely adopted. Furthermore, while Docker can house polyglot environments, it offers no
native mechanism for orchestrating a pipeline where distinct steps might require different,
and potentially conflicting, sets of dependencies. The entire analysis is typically confined to
a single, monolithic environment.

The most critical limitation, however, lies in its guarantees of temporal reproducibility. As
noted by Dellaiera (2024), reproducibility is best viewed as a spectrum. Docker provides
strong run-time reproducibility (consistency across space), but offers weaker build-time repro-
ducibility (consistency over time). The imperative commands within a Dockerfile, such as
apt-get update, are non-deterministic by nature and can introduce temporal drift, where
rebuilding the same file at different times yields different binary artifacts. As empirically
demonstrated by Malka, Zacchiroli, and Zimmermann (2025), achieving deterministic builds
requires a system designed for this purpose, a role for which functional package managers like
Nix are architecturally better suited.1

This is not to say that Docker has no place in a reproducible research workflow. Its utility
for production deployment, continuous integration, and cross-platform distribution is well-
established. Indeed, the two approaches are not mutually exclusive. As shall be explained
in Section 2, it is possible to use Nix within Docker to benefit from the advantages of both
tools.

Making sure the development environment is reproducible is but one piece of the puzzle,
though. Even with a perfectly reproducible environment, researchers face another challenge:
reliably executing the analysis workflow. Which scripts run first? What are the dependencies
between steps? Manual execution is error-prone and poorly documented. Build automation
tools like Make address this by defining analyses as ordered, reproducible steps.

Within R, the targets package (Landau 2021) provides a modern, declarative approach to
workflow management. It tracks dependencies, caches results, and only recomputes affected
steps, improving efficiency for complex analyses. However, targets operates within a single
R session. For truly polyglot pipelines—where steps may require incompatible dependencies
or different language versions—this becomes problematic. Running targets inside a Docker
container ensures reproducibility but forces the entire pipeline to share one environment.

The current state-of-the-art in reproducible research exemplifies the complexity of navigating
this fragmented landscape. The work of McDermott (2021) provides an excellent case study
in best practices, with an accompanying repository that is fully reproducible.2 Achieving this
gold standard, however, required the masterful integration of multiple complex and disparate
tools: renv for managing R packages, Docker for containerizing the system environment,
and Make for orchestrating the analysis. This demonstrates that while a high degree of

1This contrast between the procedural, imperative commands of a Dockerfile and the declarative, func-
tional model of Nix highlights a fundamental dichotomy in approaches to reproducibility, a concept we will
examine in detail as we introduce the Nix package manager in Section Section 2.

2See https://github.com/grantmcdermott/skeptic-priors

https://github.com/grantmcdermott/skeptic-priors
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reproducibility is attainable, it requires a heroic effort, forcing researchers to become experts
in a brittle and complex toolchain.

Furthermore, the complexity increases for polyglot projects, which must manage multiple
ecosystems simultaneously.

Researchers therefore need a tool that:

1. Manages complete environments including languages, packages, and system dependen-
cies;

2. Supports multiple languages natively;
3. Works interactively without container complexity;
4. Provides step-level isolation for different environments;
5. Ensures bit-for-bit reproducibility through deterministic builds;
6. Remains simple enough for researchers without systems administration expertise.

The Nix package manager provides these capabilities. It ensures reproducible installation by
deploying component closures—packages bundled with all their direct and transitive depen-
dencies (Dolstra et al. 2004). Think of installing a package as packing for a trip: traditional
package managers assume you’ll find essentials at your destination, while Nix packs every-
thing you need. This produces self-contained software environments that behave identically
across machines and over time.

Nix can replace Docker for isolation, renv for package management, and even Make for
orchestration—all within a single, unified framework. However, it has a steep learning curve,
with its own functional language for declaratively defining software builds and configurations.
While this ensures reproducibility, it also creates a barrier to adoption.

To make Nix accessible to researchers, we developed two R packages:

• rix generates Nix expressions from intuitive R function calls, eliminating the need to
learn the Nix language. It handles environment definitions including R, Python, Julia
(Bezanson, Edelman, Karpinski, and Shah 2017), system tools, and dependencies.

• rixpress orchestrates polyglot analytical pipelines using Nix as the build engine. Each
step runs in its own hermetic environment with automatic caching and dependency
tracking, enabling true polyglot workflows across R, Python, and Julia. Python users
can use ryxpress, a direct port.

Together, these packages provide a single framework for managing reproducible, polyglot en-
vironments and executing complex workflows with step-level isolation. While Nix remains
complex for advanced use, rix and rixpress abstract this complexity, making deep repro-
ducibility accessible without systems administration expertise.

The remainder of this paper proceeds as follows. Section 2 introduces Nix and explains
how its functional model enables reproducibility. Section 3 presents rix and demonstrates
environment definition. Section 4 discusses the rstats-on-nix fork of the package repository.
Section 5 introduces rixpress and demonstrates polyglot pipeline orchestration. Section 6
concludes with discussion of future directions.
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2. The Nix Package Manager

Nix is a cross-platform package manager designed for reproducible software installation and
deployment. Unlike traditional package managers, Nix emphasizes immutable infrastructure
and a functional programming paradigm to ensure computational environment consistency.
The primary Nix package collection, nixpkgs, provides access to over 120,000 packages, in-
cluding nearly all of CRAN and Bioconductor.3 According to Repology, a service tracking
package repositories across distributions, nixpkgs is both the largest and among the most
up-to-date repositories available (Figure Figure 1).

Figure 1: Package repository size and freshness according to Repology. nixpkgs leads in
both total package count and update recency, making it well-suited for reproducible research
environments.

This extensive coverage allows users to install not only R but also all required packages and
system-level dependencies for any given project.

A key advantage of Nix over traditional installation methods lies in its comprehensive de-
pendency management. Consider the sf package for spatial data analysis in R. It requires
several complex system libraries: GDAL, GEOS, and PROJ. Manually installing and config-
uring these libraries is challenging and platform-specific. With Nix, users simply declare sf
as a project requirement, and Nix automatically installs and configures all necessary system
libraries as transitive dependencies.

3Only about 80 packages currently fail to build on the NixOS build farm, plus roughly 30 packages marked
as broken by the maintainers of the R ecosystem. These could, in principle, be fixed, but doing so would
require significant effort. Marking them as broken signals to users that their build failures are known and
intentional. It should be further noted that some packages may build successfully, but then fail at runtime as
they try to further install runtime dependencies on first run. One such example is torch.
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This seamless process stems from Nix’s concept of component closures. As Dolstra et al.
(2004) explains:

The idea is to always deploy component closures: if we deploy a component, then
we must also deploy its dependencies, their dependencies, and so on. […] Since
closures are self-contained, they are the units of complete software deployment.

In other words, every package deployment includes everything it needs to run, with no hidden
dependencies on the host system.

Comprehensive dependency tracking, however, is not unique to Nix. The r2u project by
Eddelbuettel (2025) achieves something similar for Ubuntu: once the r2u repository is config-
ured, every R package is installed as a binary with all its dependencies automatically resolved.
In principle, any package manager could implement such tracking.

What distinguishes Nix (and its sibling Guix, the only other functional package manager) is
its functional package management model. This model makes full dependency specification
intrinsic to the system, mandatory by design, and replaces the imperative, step-by-step nature
of traditional package managers (install this, then that) with a declarative one: users describe
the desired end state (an environment with these packages), and Nix determines how to realize
it.

A further advantage is that packages built by Nix act as universal binaries across any Linux
system (on the same architecture) where Nix is installed. This “build once, run anywhere”
property has long been solved by Nix, and is now being revisited by Posit through its initiative
to provide portable CRAN binaries (Posit, PBC 2025).

This universality stems from Nix’s use of derivations, declarative blueprints that specify all
inputs (source code, build commands, dependencies) required to build a package. When
software is installed, Nix evaluates expressions written in the Nix language to produce these
derivations. Because every input is explicitly declared, builds are fully reproducible and
independent of the surrounding environment.

For example, the rJava package definition includes the correct JAVA_HOME configuration point-
ing to its jdk dependency. Outside Nix, users must manually set this variable if automatic
detection fails. Within Nix, maintainers encode such details once, ensuring every user benefits
from a consistent, reliable installation.

At its core, Nix treats software builds as pure functions, a concept borrowed from functional
programming. A pure function always produces the same output for a given input—for
example, if 𝑓(𝑥) = 𝑥2, then 𝑓(2) = 4 invariably holds. Likewise, Nix guarantees that identical
inputs (source code, dependencies, build instructions) yield identical outputs (built packages),
regardless of when or where the build occurs.

This determinism is achieved through hermetic (isolated) builds with no hidden dependen-
cies on global system state nor undeclared side effects. The effectiveness of this model was
validated at unprecedented scale by Malka et al. (2025), who rebuilt 709,816 packages from
historical nixpkgs snapshots (2017–2023), finding rebuildability rates exceeding 99% and bit-
wise reproducibility rates between 69% and 91%, with an upward trend. Importantly, about
15% of unreproducible builds failed due to embedded timestamps—a solvable implementation
issue rather than a fundamental model limitation.
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All Nix package definitions are hosted in the nixpkgs GitHub repository. By pinning to a
specific commit (or equivalently, a specific date), users guarantee that all installed packages
derive from identical build instructions. An environment built today using a pinned revision
will produce the same software versions and configurations if rebuilt years later, provided the
nixpkgs repository remains accessible (it is archived and distributed across multiple mirrors).

Nix installs all packages into a content-addressed directory called the Nix store (typically
/nix/store). Each package occupies a unique subdirectory whose name includes a crypto-
graphic hash of all its inputs: source code, dependencies, and build instructions. This means
/nix/store/abc123-dplyr-1.0.0 and /nix/store/xyz789-dplyr-1.1.0 can coexist with-
out conflicts, allowing multiple R versions on the same system and eliminating “dependency
hell.”

While this functional approach enhances reproducibility, it can introduce complexity for pack-
age maintainers, particularly for software downloading external assets during installation (e.g.,
certain Bioconductor packages). For end-users, however, this complexity is largely abstracted
away by rix and rixpress, which we introduce in the following sections.

For a more in-depth technical discussion of Nix’s design principles, see Dolstra et al. (2004).

By leveraging these principles, Nix provides a unified framework that can subsume the func-
tionalities of disparate tools. For R projects, it can replace the combination of renv for package
management and Docker for system-level isolation. Similarly, for Python projects, it offers
a more comprehensive alternative to requirements.txt files and virtual environments. Fur-
thermore, Nix excels at composing polyglot environments, seamlessly integrating R, Python,
Julia, a LaTeX distribution, and any of the numerous other tools available in nixpkgs. This
enables the creation of a truly complete, project-specific, and deeply reproducible environ-
ment suitable for both interactive development and non-interactive, automated analysis. The
long-term viability of this reproducibility is contingent only on the continued accessibility of
the nixpkgs repository or a suitable fork, as will be discussed in Section Section 4.

Nix offers robust cross-platform support, running natively on Linux (x86_64) with optimal
functionality. On macOS (Intel and Apple Silicon), however, its reproducibility guarantees
are somewhat compromised by dependencies on proprietary system frameworks and Xcode
toolchains that reside outside of the Nix store; consequently, macOS users may need to
update project pins following system upgrades. For Windows users, Nix operates effectively
through the Windows Subsystem for Linux (WSL2), where environments can be integrated
into development workflows using editors like VS Code or Positron.

While Nix is a powerful system, its adoption is not without notable challenges. The most sig-
nificant is its steep learning curve; it uses its own programming language, also called Nix, which
is purely functional, a paradigm that may be unfamiliar to many researchers. This complex-
ity is most apparent when authoring custom build instructions or troubleshooting intricate
dependency issues. Additionally, build times can be substantial for large environments when
pre-built binary artifacts are not available from a cache. The immutable, content-addressed
nature of the Nix store also leads to higher disk usage compared to traditional package man-
agers. Finally, while the nixpkgs repository is extensive, certain niche packages may be
unavailable or fail to build on all platforms.

Beyond these technical aspects, a practical hurdle to adoption is the ubiquity of Docker. Given
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the extensive infrastructure and community knowledge built around containerization, Nix
can be perceived as a competing rather than a complementary technology. This perception,
however, is a false dichotomy. Docker and Nix allow researchers to solve similar issues but
these tools are not alternatives of one another. Thus, a powerful hybrid model involves using
Nix to deterministically build the environment during the construction of a Docker image,
which is then deployed using standard container infrastructure. This approach leverages the
strengths of both tools: Nix provides robust build-time reproducibility, while Docker serves as
a universal distribution and deployment mechanism. For many research workflows, however,
where interactive development is paramount and the overhead of containerization is a barrier,
the unified model provided by Nix alone can provide a more direct and streamlined path to
reproducibility.

To make these capabilities more approachable for R users seeking reproducible, project-specific
environments without learning the full Nix language, we created the rix and rixpress packages.

3. Reproducible development environments with Nix

As mentioned, Nix expressions are written in the Nix programming language, which is purely
functional. Here is a simple example that creates a shell environment containing version 4.3.1
of R:

let
pkgs = import (fetchTarball

"https://github.com/NixOS/nixpkgs/archive/976fa336.tar.gz"
) {};
system_packages = builtins.attrValues {

inherit (pkgs) R;
};

in
pkgs.mkShell {

buildInputs = [ system_packages ];
shellHook = "R --vanilla";

}

In this expression, the let keyword is used to define variables. The variable pkgs imports the
set of packages from the nixpkgs repository at the specified commit 976fa336. The variable
system_packages lists the packages to include in the environment; in this case, it is just the
R programming language, along with all its dependencies and their transitive dependencies.
The mkShell function then creates a development shell with the specified packages. The
shellHook is set to "R --vanilla", meaning that entering the shell automatically starts R
in vanilla mode, ignoring any startup options.

This expression can be saved in a file called default.nix. The environment can then be built
on a system with Nix installed using the nix-build command.4. Once the build completes,
the user can enter the interactive shell with nix-shell, which executes the following steps:

4For installing Nix, we recommend the Determinate Systems installer: https://determinate.systems/posts/
determinate-nix-installer

https://determinate.systems/posts/determinate-nix-installer
https://determinate.systems/posts/determinate-nix-installer
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• Nix reads the expression and identifies what needs to be installed;
• It checks if these packages already exist in /nix/store;
• If not, it downloads or builds them (with all dependencies);
• It creates a new shell environment and updates the $PATH to include the right binaries

from /nix/store.
• The user is now in an interactive Nix shell session.

This shell contains all the packages specified in default.nix and can be used for development,
similar to activating a virtual environment in the Python ecosystem.

Writing Nix expressions can be challenging for users unfamiliar with the Nix language. How-
ever, the ability to define a fully reproducible development environment in a single text file
and then rebuild it anywhere is highly appealing. rix aims to lower the barrier to adoption
of Nix for reproducibility.

rix, an R package, provides the rix() function, which simplifies generating Nix expressions.
It is available on CRAN and can be installed like any other R package. Additionally, it can
bootstrap an R development environment on a system where R is not yet installed but Nix is
available. This can be done by running (inside of a terminal):

$> nix-shell -I \
+ nixpkgs=https://github.com/rstats-on-nix/nixpkgs/tarball/2025-10-20 -p \
+ R rPackages.rix

(the -I flag allows one to pass a specific revision of nixpkgs, ensuring temporary shells are
also reproducible).

This command opens a temporary R session with rix available.5 From there, users can gen-
erate new Nix expressions for building environments. For example, the following generates a
default.nix file that installs R 4.3.1 along with the dplyr and chronicler packages:

R> library('rix')

R> rix(r_ver = "4.3.1",
+ r_pkgs = c("dplyr", "chronicler"),
+ project_path = ".",
+ overwrite = TRUE)

rix can also handle more complex setups, and users can provide a date instead of a specific R
version:

R> rix(date = "2025-10-20",
+ r_pkgs = c("rix", "dplyr", "chronicler", "AER@1.2-8"),
+ system_pkgs = c("quarto", "git"),
+ tex_pkgs = c(
+ "amsmath",
+ "framed",
+ "fvextra",
+ "environ",
+ "fontawesome5",

5nix-shell -p starts an interactive shell with the specified packages.
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+ "orcidlink",
+ "pdfcol",
+ "tcolorbox",
+ "tikzfill"
+ ),
+ git_pkgs = list(
+ package_name = "fusen",
+ repo_url = "https://github.com/ThinkR-open/fusen",
+ commit = "60346860111be79fc2beb33c53e195f97504a667"
+ ),
+ ide = "positron",
+ project_path = ".",
+ overwrite = TRUE)

This call to rix() generates a default.nix file for a development shell that encapsulates a
complete and reproducible research environment. It provides R and its packages (including
AER at version 1.2-8), several TeXLive packages for LATEXdocument authoring, development
versions of rix and fusen pulled directly from GitHub at a specific commit, and the Positron
editor. The reproducibility of this environment is guaranteed by pinning all components to a
single point in time: the R packages are resolved from the CRAN snapshot of October 20th
2025, while all other system tools are fixed to the version of nixpkgs from that same date.
Typing nix-shell in a terminal within the folder that contains this default.nix will drop
the user into a new shell. It is also possible to configure IDEs to dynamically load this new
shell to provide the proper development tooling for better interactive use.

It is also possible to include Python and Julia packages using the py_conf and jl_conf
arguments respectively. Julia packages work the same way as R packages: they are pinned to
their versions as of the specified date.

Python packages, however, require special handling. Unlike CRAN or the Julia package
registry, PyPI (the Python Package Index) contains over 500,000 packages with highly variable
quality—many lack proper build specifications, have broken dependencies, or are abandoned.
Because of this heterogeneity, Nix maintainers cannot automatically package all of PyPI as
they do for CRAN or the Julia registry. Instead, they manually curate and package individual
Python packages that meet quality standards.6 This means some Python packages, or specific
versions, may not be available through Nix.

For projects requiring Python packages not available in Nix, rix supports integration with
uv, a modern Python package manager. This allows users to combine Nix’s system-level
reproducibility (Python interpreter, system libraries) with uv’s comprehensive package avail-
ability. While this hybrid approach sacrifices some of Nix’s deterministic build guarantees for
Python packages, it provides a pragmatic solution when the needed packages are unavailable
in nixpkgs.

Users can include uv as a system package:

R> rix(date = "2025-10-20",
+ r_pkgs = c("rix", "dplyr", "chronicler"),

6On October 2025, this amounts to roughly 10000 packages, according to the search engine for Nix packages.
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+ system_pkgs = c("uv"),
+ project_path = ".",
+ overwrite = TRUE)

This hybrid approach offers complementary strengths: Nix manages the Python interpreter,
system libraries (e.g., GDAL, HDF5), and R packages with full determinism, while uv handles
Python packages through its own lockfile mechanism (uv.lock). Within the Nix environment,
users run standard uv commands (e.g., uv pip install pandas==2.0.0) to install Python
packages. The uv lockfile records exact package versions and their hashes, providing repro-
ducibility for the Python package layer.

While this approach doesn’t achieve Nix’s level of build-time determinism for Python packages
(uv still downloads wheels or builds packages at install time rather than using pre-built,
content-addressed artefacts) it provides a pragmatic balance: comprehensive Python package
availability with reasonable reproducibility guarantees. For polyglot projects, this means R
and system-level dependencies remain fully reproducible through Nix, while Python packages
gain the reproducibility that uv can provide. We recommend of course to use Python through
Nix whenever possible and only resort to the hybrid approach with uv as a last resort.7

Anywhere Nix can be installed, users can benefit from its features. For instance, the repos-
itory containing the source code for this article8 uses GitHub Actions to compile the paper.
Each time a push is made to the master branch, a runner installs Nix, generates the en-
vironment from the hosted default.nix file, and compiles the paper using Quarto within
the reproducible environment. This ensures that exactly the same environment is used on
the authors’ machines and on the CI/CD platform without any additional, platform-specific,
configuration.

Instead of first entering a Nix shell, it is also possible to run a program directly from the
environment:

cd /path/to/project/ && nix-shell default.nix --run "Rscript analysis.R"

This command runs Rscript and executes the analysis.R script, which in this example
should be located in the same directory as default.nix.

4. The rstats-on-nix fork of nixpkgs

As explained earlier, Nix uses expressions from the nixpkgs GitHub repository to build
software. However, when generating expressions with rix, the fork rstats-on-nix/nixpkgs
is used instead.

Using a fork offers several advantages. First, it provides flexibility that the official nixpkgs
repository cannot always accommodate. Because Nix serves as the package manager for the
NixOS Linux distribution, upstream priorities center on system-level stability rather than
rapid updates to language ecosystems like R or Julia.

7It is also possible to package the missing Python for Nix and submit a pull request to nixpkgs, but we
recognise that this option may not be beginner-friendly.

8https://github.com/b-rodrigues/rix_paper
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For instance, while Nix can theoretically support multiple versions (or variants) of the same
package, in practice maintainers cannot provide several variants for all R packages, given the
size of the ecosystem (over 20,000 CRAN and Bioconductor packages). This makes it difficult
to install a specific version of an R package not included in a particular nixpkgs commit.
With rix, users can install a specific package version from source, e.g.:

R> rix(..., r_pkgs = "dplyr@1.0.7", ...)

However, installing from source might fail, especially if the package needs to be compiled.

Additionally, updating the full R package set on Nix daily is impractical. While CRAN and
Bioconductor update daily, the R packages in nixpkgs are only updated with new R releases.
This limitation is due to Nix’s governance as a Linux distribution package manager.

The rstats-on-nix fork allows us to circumvent these limitations. For example, it provides
daily snapshots of CRAN and the Julia. Each day, the R package set is updated and committed
to a dated branch using GitHub Actions. Users can select a specific date with:

R> rix(date = "2024-12-14", ...)

We strive to provide an available date per week: each Monday, a GitHub Action tests popular
R packages on Linux and macOS, and only if all tests succeed is the date added to the list
of available dates in rix. Users can see all available dates with rix::available_dates().
This ensures users can reliably install packages, and allows us to backport fixes if needed.
For example, when RStudio was temporarily broken due to a dependency issue (boost), a
pull request was submitted to the official nixpkgs repository. I backported the fix to the
rstats-on-nix fork, making RStudio available to users of rix earlier than upstream, as
merging PRs in the official repository can take some time.

We have backported fixes to the rstats-on-nix nixpkgs fork as far back as March 2019.
The process involves checking out a nixpkgs commit on the selected date, updating the R
package set using Posit CRAN and Bioconductor snapshots, backporting fixes, and ensur-
ing popular packages work on both x86-linux (including WSL2) and aarch64-darwin (Apple
Silicon). These changes are committed to a dated branch in rstats-on-nix/nixpkgs.

A drawback of forking nixpkgs is that backported packages are not included upstream and
thus are not prebuilt by Nix’s CI platform, Hydra. Users may need to build many packages
from source, which can be time-consuming. To mitigate this, we provide a binary cache
sponsored by Cachix9, complementing the public Nix cache. Instructions for using Cachix
are in rix’s documentation. Using the cache significantly speeds up installations, as prebuilt
packages are downloaded rather than compiled.

The fork also allows us to catch issues (such as packages’ builds breaking) early on, and
prepare fixes that can then be contributed upstream.

While the reliance on the rstats-on-nix fork might initially raise sustainability concerns,
this risk should be contextualized. The fork serves a focused purpose: it updates CRAN
and Julia package registries daily and backports fixes when builds break. Importantly, users
are never locked into this fork—they retain the ability to point directly to any commit in
the upstream nixpkgs repository, maintaining full access to the official Nix ecosystem. The

9https://www.cachix.org/

https://www.cachix.org/
https://www.cachix.org/
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fork introduces no fundamental architectural changes or proprietary extensions; it functions
as a convenience layer providing tested package sets and dated snapshots. Should mainte-
nance cease, users could seamlessly transition to upstream nixpkgs commits, though with
trade-offs: less frequent R and Julia package updates. The fork’s value lies not in creating de-
pendency, but in reducing friction through testing infrastructure and curated “known-good”
dates. Thus, the fork represents an enhancement to user experience rather than a critical sin-
gle point of failure—the underlying Nix infrastructure and official nixpkgs repository remain
the foundation, ensuring long-term viability of environments created with rix.

5. Orchestrating the workflow with rixpress

Defining a reproducible environment with rix addresses the first major challenge of repro-
ducibility: environment capture. The second challenge, reliably and efficiently executing the
analysis workflow within that environment, is addressed by rixpress (or ryxpress for Python
users).

As mentioned in the introduction, a build automation tool like targets is invaluable for man-
aging complex analyses. It tracks dependencies between code and data, caches results, and
only recomputes steps that have changed. One can run a targets pipeline inside a Nix envi-
ronment to make it reproducible. However, this approach has limitations: the entire pipeline
must run in a single environment, and orchestrating steps across different languages (e.g., R
and Python) requires manual handling via packages like reticulate.

rixpress overcomes these limitations by using Nix not just as a package manager, but as the
build automation engine itself. In a rixpress pipeline, each step is defined as a Nix derivation,
providing two key benefits:

1. True Polyglot Pipelines: Each step can have its own Nix environment. A Python step
can run in a pure Python environment, an R step in an R environment, and a Quarto
rendering step in yet another, all within the same pipeline.

2. Deep Reproducibility: Each step is a hermetically sealed Nix derivation whose output is
cached in the Nix store based on the hash of all its inputs. All artefacts depend directly
on their computational environment, ensuring that any change in dependencies triggers
a rebuild.

As an example, we demonstrate a polyglot pipeline that simulates a Real Business Cycle
(RBC) model in Julia, trains an XGBoost forecasting model in Python on the simulated data,
visualises results in R, and compiles a Quarto report. The code for this example can be
found in the following repository10, with additional details provided in the Appendix of this
manuscript. Although this example is purely synthetic and not of scientific significance, it
effectively demonstrates the capabilities of rixpress. It should also be noted that the code
Julia, Python and R was generated by a large language model.

For new projects, rixpress provides rxp_init(), which generates the necessary boilerplate
structure including a pipeline definition file and template helper scripts. Users then define
their pipeline in the script gen-pipeline.R using functions inspired by targets, and the
computational environment the pipeline will be executed in the gen-env.R script. If functions

10https://github.com/b-rodrigues/rixpress_demos/tree/master/case-study

https://github.com/b-rodrigues/rixpress_demos/tree/master/case-study
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are needed for pipeline steps, these are to be specified, in language-specific helper scripts:
functions.jl for Julia, functions.py for Python, and functions.R for R. This separation
keeps the pipeline definition clean and readable while encapsulating the scientific logic in
appropriate language-native files. Importantly, these helper scripts are standard language
files—they contain no rixpress-specific code and can be reused in other projects or executed
independently outside of Nix. This design allows users to preserve standard development
practices while still benefiting from declarative orchestration.

The following example demonstrates how rixpress orchestrates a granular, multi-step data sci-
ence workflow that crosses language boundaries. (Complete setup instructions and a detailed
walkthrough are provided in Appendix)

R> library('rixpress')

R> pipeline_steps <- list(
+ # STEP 0: Define RBC Model Parameters in Julia
+ rxp_jl(alpha, 0.3),
+ rxp_jl(beta, 1 / 1.01),
+ # ... (other parameters omitted for brevity) ...
+
+ # STEP 1: Julia - Simulate the RBC model
+ rxp_jl(
+ name = simulated_rbc_data,
+ expr = "simulate_rbc_model(alpha, beta, delta, rho, sigma, sigma_z)",
+ user_functions = "functions/functions.jl",
+ encoder = "arrow_write"
+ ),
+
+ # STEP 2.1: Python - Prepare features
+ rxp_py(
+ name = processed_data,
+ expr = "prepare_features(simulated_rbc_data)",
+ user_functions = "functions/functions.py",
+ decoder = "pyarrow.feather.read_feather"
+ ),
+
+ # STEP 2.2: Python - Split data (X_train, y_train, etc.)
+ rxp_py(name = X_train, expr = "get_X_train(processed_data)", ...),
+ # ... (other data splits omitted for brevity) ...
+
+ # STEP 2.3: Python - Train the XGBoost model
+ rxp_py(
+ name = trained_model,
+ expr = "train_model(X_train, y_train)",
+ user_functions = "functions/functions.py"
+ ),
+
+ # STEP 2.4: Python - Make predictions and format results
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+ # ... (prediction and formatting steps omitted for brevity) ...
+ rxp_py(
+ name = final_predictions_df,
+ expr = "format_results(y_test, model_predictions)",
+ user_functions = "functions/functions.py",
+ encoder = "save_arrow"
+ ),
+
+ # STEP 3: R - Visualise the predictions
+ rxp_r(
+ name = output_plot,
+ expr = plot_predictions(final_predictions_df),
+ user_functions = "functions/functions.R",
+ decoder = arrow::read_feather
+ ),
+
+ # STEP 4: Quarto - Compile the final report
+ rxp_qmd(
+ name = final_report,
+ qmd_file = "readme.qmd"
+ )
+)

# Generate the 'pipeline.nix' file from the R list
R> rxp_populate(pipeline_steps, build = TRUE)

Computation steps, referred to as derivations, are defined using the functions rxp_r(),
rxp_jl(), and rxp_py(), corresponding to R, Julia, and Python environments, respectively.
Variants of these functions suffixed with _file() designate import derivations, which intro-
duce external data into the pipeline. It is important to note that any data imported in this
way is stored within the Nix store, ensuring reproducibility but also persisting the data in the
build environment. The function rxp_qmd() is used to compile a Quarto document (there is
also rxp_rmd() which serves the same purpose for R Markdown documents).

The rxp_populate() function translates this R list into a pipeline.nix file, which declara-
tively defines the entire workflow. Data flows from derivation to derivation by being serialised
into the efficient and language-agnostic Arrow format using the pair of encoder/decoder func-
tions. Other universal formats, such as csv or json could have been used. It should also be
noted that if interoperability libraries such as reticulate or rds2py are available, it becomes
possible to seamlessly transfer supported objects to and from R and Python (for now, such a
feature is not yet integrated for conversion of arbitrary Julia objects).

As a sidenote: Python users who wish to use ryxpress define pipelines using the same R-based
DSL shown above. This design choice keeps the pipeline definition language consistent across
both R and Python ecosystems. ryxpress calls R and rixpress under the hood to generate
and build the pipeline.nix file. To use ryxpress, one should simply add this package to the
py_conf argument of rix().

The package can then generate a visual representation of the pipeline’s directed acyclic graph
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Figure 2: Graphical representation of the polyglot pipeline. Purple nodes are Julia, yellow
nodes are Python, light blue nodes are R, and dark blue nodes are Quarto derivations.

by running rxp_dag(), as can be seen in Figure 2.

To execute the pipeline, one can either set build = TRUE in rxp_populate() or call
rxp_make() separately. Nix executes each step in order, building dependencies as needed.
Outputs are cached, so subsequent runs only recompute steps with changed inputs or code.
This provides the efficiency of targets with polyglot support and bit-for-bit reproducibil-
ity. Artefacts can be inspected interactively in R using rxp_read("artefact_name") or
rxp_load("artefact_name").

rixpress also includes several additional features not covered here for brevity. As mentioned
previously, it is also possible to configure popular IDEs to work interactively and seamlessly
with both rix and rixpress, enabling a smooth, reproducible workflow from within the de-
velopment environment. Detailed setup instructions are provided in the vignettes of both
packages.

In summary, rixpress extends the guarantees of rix from static environments to dynamic
workflows, enabling end-to-end, polyglot reproducibility.

6. A Comparison of Pipeline Paradigms: Imperative vs. Declarative

To illustrate the practical benefits of our framework, we implemented the RBC pipeline ex-
ample from Section Section 5 using two distinct paradigms. The first is a traditional, im-
perative, stack combining Docker for environment isolation, Make for workflow orchestration,
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and language-specific package managers.11 The second is our proposed declarative framework
using rix and rixpress. While both approaches successfully execute the same polyglot anal-
ysis to produce identical outputs, their comparison illuminates fundamental differences in
conceptual models, system complexity, and the nature of the reproducibility guarantees they
provide.

6.1. The Imperative Composition of Specialized Tools

The traditional approach represents a composition of specialized tools, each solving part of
the reproducibility puzzle. This paradigm is purely imperative; the researcher must explicitly
script the procedural steps for both environment construction and workflow execution.

The codification of the environment is a procedural build process specified in a Dockerfile.
Successfully authoring such a file necessitates that the researcher act as a system administra-
tor, manually scripting a sequence of shell commands to install each component. This includes
managing apt repositories for R, invoking external installers like uv and rig for Python and
R runtimes, and using curl and tar for Julia. Subsequently, separate commands must be
run to install packages within each language’s ecosystem. The procedural verbosity and inter-
twined concerns of this approach are reflected in a Dockerfile spanning 108 lines to define
the complete environment.

Here is a sketch of this Dockerfile:

# Add R repository and install specific version
RUN apt-get update && apt-get install -y software-properties-common
RUN add-apt-repository ppa:...
RUN curl -L https://rig.r-pkg.org/... | sh
RUN rig add 4.5.1

# Install Python with uv
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
RUN uv python install 3.13

# Download and extract Julia
RUN curl -fsSL https://julialang-s3.julialang.org/... -o julia.tar.gz
RUN tar -xzf julia.tar.gz -C /opt/

# Install packages for each language separately
RUN echo 'options(repos = c(CRAN = ...))' > /root/.Rprofile
RUN Rscript -e 'install.packages(...)'

# Install Python packages using uv with specific versions for reproducibility.
RUN echo "pandas==2.3.3" > /tmp/requirements.txt && \

echo "scikit-learn==1.7.2" >> /tmp/requirements.txt && \
# ... more packages ...

11This choice of tools is illustrative: we could have used, for instance, Snakemake (Mölder, Jablonski, Letcher
et al. 2021) for workflow orchestration or conda (ana 2016) instead of uv, but the broader point remains—these
are all imperative approaches
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RUN uv pip install --no-cache -r /tmp/requirements.txt && \
rm /tmp/requirements.txt

# Install specific versions of Julia packages for reproducibility
RUN julia -e 'using Pkg; \

Pkg.add(name="Arrow", version="2.8.0"); \

This procedural philosophy extends from environment definition to workflow orchestration. A
Makefile defines the pipeline as a directed acyclic graph of file dependencies. While robust,
this model requires the researcher to manually encode the dependency graph, tightly coupling
the analytical logic to specific file paths. Furthermore, since make is agnostic to the content
of these files, it provides no mechanism to enforce type or schema consistency between steps.

A direct consequence of this file-based orchestration model is the proliferation of wrapper
scripts. Each step in the Makefile invokes a script containing a significant amount of pro-
cedural boilerplate unrelated to the scientific logic. This includes parsing command-line
arguments, handling data serialization and deserialization, and managing file paths. The core
analytical logic is thus obscured by necessary but extraneous scaffolding.

The cumulative effect is a system of high structural complexity. The traditional implemen-
tation requires nine separate files to fully specify the environment, workflow, and analysis.
This includes the Dockerfile, Makefile, three wrapper scripts for orchestration, and three
functions files containing the core logic, in addition to the final report. The cognitive over-
head is substantial, as a user must comprehend the conventions and interactions of this entire
toolchain.

6.2. A Unified Declarative Framework

The Nix-based framework inverts this imperative model. Instead of scripting the procedural
construction of the environment and workflow, the researcher declares the desired end-state.

Environment specification is reduced to a single declarative statement in the gen-env.R script.
The researcher specifies what the environment should contain, leaving the procedural imple-
mentation of how to build it entirely to the Nix toolchain. The gen-env.R script replaces
the 108-line Dockerfile, abstracting away all system administration details. rix translates
this high-level specification into a formal Nix expression that deterministically resolves all
transitive dependencies for the complete polyglot environment.

R> library(rix)
R> rix(
+ date = "2025-10-14",
+ r_pkgs = c("ggplot2", "dplyr", "arrow"),
+ jl_conf = list(jl_version = "lts", ...),
+ py_conf = list(py_version = "3.13", ...),
+ ...
+ )

Workflow orchestration undergoes a similar conceptual shift from procedural to declarative.
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The gen-pipeline.R script defines the pipeline not as a set of file rules, but as a graph of data
objects. Dependencies are not manually specified but are automatically inferred by rixpress
from the functional relationships in the code. This object-centric model renders the procedural
wrapper scripts unnecessary. The scientific logic is expressed as a set of pure functions that
accept data structures as inputs and return them as outputs, free of any boilerplate for file
I/O or command-line parsing.

# functions/functions.py
>>> def train_and_predict_output(simulated_df: pd.DataFrame) -> pd.DataFrame:
+ # ... scientific logic ...
+ return format_results(predictions)

This declarative approach significantly reduces system complexity. The entire implementation
requires only six files: two for the high-level environment and pipeline declarations, three
containing the pure scientific functions, and the final report. The reduction is not merely
quantitative; the remaining files are conceptually simpler, containing only analytical logic
and specifications, with all procedural scaffolding abstracted away by the framework.

6.3. Reproducibility Guarantees: Space and Time

The critical distinction between the two paradigms lies in the nature of their reproducibil-
ity guarantees. The traditional stack, anchored by Docker, provides strong spatial repro-
ducibility—the ability to execute the analysis identically across different machines. However,
it is vulnerable to temporal drift, a concept that distinguishes reproducibility across space
from consistency over time (Malka, Zacchiroli, and Zimmermann 2024). This temporal vulner-
ability arises from several sources, including the resolution of mutable base image tags (e.g.,
ubuntu:24.04) and the potential for language-level package managers to resolve dependencies
differently over time.

The Nix-based approach is architected to solve this problem of temporal drift. By pinning the
entire software ecosystem to a single, immutable revision of the nixpkgs repository, the frame-
work provides strong guarantees of temporal reproducibility. This claim is supported by
large-scale empirical evidence; a study by Malka et al. (2025), which rebuilt over 700,000 his-
torical packages, confirmed that Nix’s functional model achieves a bit-for-bit reproducibility
rate exceeding 90% and a rebuildability rate over 99% across a multi-year time-frame.

6.4. Summary of Differences

Dimension Traditional Stack
Nix-Based Framework with rix and
rixpress

Paradigm Imperative composition of
specialized tools

Declarative specification in unified
framework

Environment
setup

Step-by-step shell commands High-level specification

Workflow
definition

File-based rules in Make syntax Object-based graph in R syntax
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Dimension Traditional Stack
Nix-Based Framework with rix and
rixpress

Scientific code Wrapped in CLI parsing and
file I/O boilerplate

Pure functions with no plumbing

File count 9 files (4 for orchestration and
plumbing)

6 files (2 for orchestration)

Expertise
required

Linux system administration,
Make syntax

R programming

Spatial
reproducibility

Strong Strong

Temporal
reproducibility

Moderate (vulnerable to drift) Strong

This declarative rigor, however, is not without pragmatic costs. Our validation on GitHub
Actions shows that the imperative Docker-based runner completes the entire pipeline in ap-
proximately three minutes, whereas the declarative Nix-based runner takes around five min-
utes.12 Nix’s deterministic dependency resolution guarantees bit-for-bit reproducibility at
the expense of initial computation time, whereas the imperative system prioritizes immediacy
over long-term stability.

7. Conclusion

Many tools exist to improve reproducibility, but Nix stands out because it deploys complete
software environments closed under the “depends on” relation: it installs not only a pack-
age but all of its transitive dependencies. This makes Nix uniquely suited for reproducible
research.

Yet solving such a complex problem makes Nix itself complex, as it relies on a functional
paradigm still likely unfamiliar to most researchers. rix lowers this barrier for R users by
providing a familiar interface and workflow. By declaratively specifying reproducible develop-
ment shells with Nix, researchers can accommodate diverse use cases—from running analytical
pipelines to developing interactive shiny applications or serving plumber APIs.

Furthermore, rixpress extends this declarative model to entire analysis pipelines. By lever-
aging Nix as a unified build automation system, rixpress enables polyglot workflows where
each step runs in a hermetically sealed environment. This ensures both spatial and tempo-
ral reproducibility, efficient caching, and seamless orchestration of multi-language analyses.
Crucially, it provides native polyglot support without the manual orchestration required by
container-based approaches, making complex workflows accessible without systems adminis-
tration expertise.

Adopting Nix-based workflows represents a conceptual shift from procedural scripting to
declarative specification. A practical adoption pathway begins with using rix to generate
reproducible environments for new projects while maintaining existing workflows. This allows

12To run the benchmark yourself, fork the paper’s repository, enable GitHub Actions, and push a single
change to trigger the runs.
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gradual learning of Nix concepts without disrupting active research. As confidence grows,
researchers can extend to rixpress for smaller analyses before tackling complex pipelines.
Institutions can support adoption by offering workshops, maintaining binary caches, and
designating local experts. While early projects require investment, later projects benefit from
reusable environment definitions and cumulative expertise. Ultimately, adoption depends on
project scope, reproducibility needs, and institutional context—but the framework now exists
for those who require robust, long-term reproducibility.

While rix and rixpress (and ryxpress) represent significant progress, current limitations re-
main. Debugging complex rixpress pipelines is more challenging than troubleshooting tar-
gets workflows, especially when failures occur deep in the Nix build process. Visualization
capabilities, though useful, currently lack features such as automatic detection of outdated
derivations. Cross-platform reproducibility remains generally strong but is constrained on
macOS by proprietary framework dependencies. These challenges are active areas for devel-
opment and community contribution. Researchers adopting these tools should do so with
realistic expectations: they provide strong guarantees of spatial and temporal reproducibility
and scalable polyglot workflows, but they require patience during the learning phase and may
occasionally present challenges that simpler tools avoid.
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8. Appendix

8.1. Reproducing this paper

The source code of this paper is hosted on GitHub and can be found at following link13. The
paper can be easily compiled by running the following command:

$> nix-shell --run "quarto render paper.qmd --to jss-pdf"

The default.nix file defines the exact computational environment required to compile the
manuscript, ensuring full reproducibility of the build process. To guarantee the reproducibility
of the manuscript, it is automatically recompiled via GitHub Actions upon each commit, using
the same Nix environment. An HTML version is additionally deployed to GitHub Pages,
providing an accessible format for viewing on smaller devices at this link14. The PDF version
of the manuscript can be found at link15.

8.2. A Complete Polyglot Example with rixpress

13https://github.com/b-rodrigues/rix_paper
14https://b-rodrigues.github.io/rix_paper/
15https://b-rodrigues.github.io/rix_paper/paper.pdf
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This appendix provides a conceptual walk-through of the polyglot pipeline example discussed
in Section 5. The pipeline simulates a RBC model in Julia, trains an XGBoost model in
Python, visualises the results in R, and compiles a final report with Quarto.

The complete, runnable source code for this example is available in the paper’s GitHub
repository. A shell script, repro_script.sh, is provided to automate the entire process from
environment creation to final output, as described at the end of this section16.

Project Structure and Components

The project is organized into a set of scripts, each with a distinct responsibility. The core
logic is separated from the environment definition and pipeline orchestration.

• functions/: This directory contains the helper scripts with the core analytical code
for each language.

– functions.jl: The Julia script for the economic simulation.
– functions.py: The Python script for the machine learning workflow.
– functions.R: The R script for data visualisation.

• gen-env.R: An R script that defines the reproducible computational environment.
• gen-pipeline.R: The main R script that defines and orchestrates the entire polyglot

pipeline.

Step 1: The Environment Definition

The foundation of the project is the reproducible environment, defined in gen-env.R. This
script uses the rix() function to programmatically generate a default.nix file. This file
serves as a complete blueprint for the computational environment, specifying:

• The exact versions of R, Python, and Julia.
• A list of required packages for each language (e.g., ggplot2 for R, xgboost for Python,

DataFrames for Julia).
• System-level dependencies like Quarto.

Crucially, the entire environment is pinned to a specific date (2025-10-14), ensuring that
anyone who builds the environment, now or in the future, will get the exact same software
versions, guaranteeing reproducibility.

By dropping into a temporary shell using the following command:

$> nix-shell -I \
+ nixpkgs=https://github.com/rstats-on-nix/nixpkgs/tarball/2025-10-20 -p \
+ R rPackages.rix

it is possible to generate the default.nix by sourcing gen-env.R. Then, one leaves this
temporary shell, and builds the environment using the command nix-shell, which also drop
the user into the development shell.

Step 2: The Core Analytical Logic

16https://github.com/b-rodrigues/rix_paper/blob/master/repro-script/repro_script.sh

https://github.com/b-rodrigues/rix_paper/blob/master/repro-script/repro_script.sh
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The scientific logic for each stage of the pipeline is encapsulated in the separate helper scripts
within the functions/ directory.

• The RBC Model Simulation (functions.jl): This Julia script contains a single pure
function that implements the state-space solution to the RBC model, based on De Paoli
(2009). It takes the model’s economic parameters as inputs and returns the simulated
time-series data as a DataFrame.

• The XGBoost Forecasting Model (functions.py): This Python script handles the com-
plete machine learning workflow through a series of modular functions. Its responsi-
bilities include feature engineering (creating lagged variables), splitting the data into
training and testing sets, training the XGBoost model, and generating predictions.

• The Visualisation (functions.R): This R script contains a function that uses ggplot2
to create the final visualisation. It is designed to take the data frame of actual and
predicted values produced by the Python script and generate a plot comparing the two
series.

Step 3: Orchestrating the Pipeline

The entire workflow is defined and orchestrated by gen-pipeline.R. This script acts as the
master plan, using functions from the rixpress package to define each computational step as
a derivation. It declaratively outlines the dependencies between steps:

1. It begins by defining the RBC model parameters in Julia.
2. It specifies that the RBC simulation in functions.jl depends on these parameters.
3. It then defines the series of Python steps (feature preparation, training, prediction),

making each one dependent on the output of the previous one. The first Python step is
explicitly made dependent on the output from the Julia simulation. rixpress handles the
passing of data between languages, in this case using the Arrow file format for efficiency.

4. Finally, it defines the R visualisation step, which depends on the final predictions
from the Python model, and a Quarto rendering step that depends on the generated
plot.

When this script is run in the development shell (by executing source("gen-pipeline.R")),
rixpress translates the declared pipeline into a master Nix expression that Nix can execute,
automatically handling the caching of results and re-running only the necessary steps if a
piece of code or data changes.

To build the pipeline from an interactive Python session, one would execute the following
lines:

>>> from ryxpress import rxp_make
>>> rxp_make()

Running the Project

This entire example can be executed by running the repro_script.sh script available in the
root of the paper’s repository. This script automates the full process: 1. It first executes
gen-env.R inside a temporary Nix shell to build the default.nix file. 2. It then executes
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gen-pipeline.R inside the newly defined environment. This triggers Nix to run the entire
polyglot pipeline in the correct order.

Upon completion, the script will have generated all intermediate artefacts and the final
readme.html report found in the pipeline-output folder containing the visualisation.

Affiliation:
Bruno Rodrigues
Department of Statistics
18, Montée de la Pétrusse
Luxembourg Luxembourg
E-mail: bruno@brodrigues.co
URL: https://www.brodrigues.co

Philipp Baumann
Data and Analytics
7, Länggassstrasse
Bern Switzerland
E-mail: baumann-philipp@protonmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:bruno@brodrigues.co
https://www.brodrigues.co
mailto:baumann-philipp@protonmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction: Reproducibility is also about software
	The Nix Package Manager
	Reproducible development environments with Nix
	The rstats-on-nix fork of nixpkgs
	Orchestrating the workflow with rixpress
	A Comparison of Pipeline Paradigms: Imperative vs. Declarative
	The Imperative Composition of Specialized Tools
	A Unified Declarative Framework
	Reproducibility Guarantees: Space and Time
	Summary of Differences

	Conclusion
	Acknowledgments
	References
	Appendix
	Reproducing this paper
	A Complete Polyglot Example with rixpress
	Project Structure and Components
	Step 1: The Environment Definition
	Step 2: The Core Analytical Logic
	Step 3: Orchestrating the Pipeline
	Running the Project



